Publikation: Task-specific algorithm advice acceptance : A review and directions for future research
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAUFMANN, Esther, Alvaro CHACON, Edgar E. KAUSEL, Nicolas HERRERA, Tomas REYES, 2023. Task-specific algorithm advice acceptance : A review and directions for future research. In: Data and Information Management. Elsevier. 2023, 7(3), 100040. ISSN 2543-9251. eISSN 2543-9251. Available under: doi: 10.1016/j.dim.2023.100040BibTex
@article{Kaufmann2023-09Tasks-67768, year={2023}, doi={10.1016/j.dim.2023.100040}, title={Task-specific algorithm advice acceptance : A review and directions for future research}, number={3}, volume={7}, issn={2543-9251}, journal={Data and Information Management}, author={Kaufmann, Esther and Chacon, Alvaro and Kausel, Edgar E. and Herrera, Nicolas and Reyes, Tomas}, note={Article Number: 100040} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67768"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67768/1/Kaufmann_2-1gmjsyz7ykn7m4.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67768/1/Kaufmann_2-1gmjsyz7ykn7m4.pdf"/> <dcterms:issued>2023-09</dcterms:issued> <dc:creator>Kausel, Edgar E.</dc:creator> <dc:creator>Chacon, Alvaro</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Herrera, Nicolas</dc:creator> <dcterms:abstract>Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.</dcterms:abstract> <dcterms:title>Task-specific algorithm advice acceptance : A review and directions for future research</dcterms:title> <dc:creator>Kaufmann, Esther</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67768"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Herrera, Nicolas</dc:contributor> <dc:contributor>Kaufmann, Esther</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T12:34:44Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kausel, Edgar E.</dc:contributor> <dc:creator>Reyes, Tomas</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:contributor>Reyes, Tomas</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T12:34:44Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Chacon, Alvaro</dc:contributor> </rdf:Description> </rdf:RDF>