Publikation:

Task-specific algorithm advice acceptance : A review and directions for future research

Lade...
Vorschaubild

Dateien

Kaufmann_2-1gmjsyz7ykn7m4.pdf
Kaufmann_2-1gmjsyz7ykn7m4.pdfGröße: 1.45 MBDownloads: 49

Datum

2023

Autor:innen

Chacon, Alvaro
Kausel, Edgar E.
Herrera, Nicolas
Reyes, Tomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Data and Information Management. Elsevier. 2023, 7(3), 100040. ISSN 2543-9251. eISSN 2543-9251. Available under: doi: 10.1016/j.dim.2023.100040

Zusammenfassung

Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Algorithm aversion, Algorithm appreciation, Decision-making, Advice-taking, Review, Artificial intelligence, Tasks

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAUFMANN, Esther, Alvaro CHACON, Edgar E. KAUSEL, Nicolas HERRERA, Tomas REYES, 2023. Task-specific algorithm advice acceptance : A review and directions for future research. In: Data and Information Management. Elsevier. 2023, 7(3), 100040. ISSN 2543-9251. eISSN 2543-9251. Available under: doi: 10.1016/j.dim.2023.100040
BibTex
@article{Kaufmann2023-09Tasks-67768,
  year={2023},
  doi={10.1016/j.dim.2023.100040},
  title={Task-specific algorithm advice acceptance : A review and directions for future research},
  number={3},
  volume={7},
  issn={2543-9251},
  journal={Data and Information Management},
  author={Kaufmann, Esther and Chacon, Alvaro and Kausel, Edgar E. and Herrera, Nicolas and Reyes, Tomas},
  note={Article Number: 100040}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67768">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67768/1/Kaufmann_2-1gmjsyz7ykn7m4.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67768/1/Kaufmann_2-1gmjsyz7ykn7m4.pdf"/>
    <dcterms:issued>2023-09</dcterms:issued>
    <dc:creator>Kausel, Edgar E.</dc:creator>
    <dc:creator>Chacon, Alvaro</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Herrera, Nicolas</dc:creator>
    <dcterms:abstract>Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.</dcterms:abstract>
    <dcterms:title>Task-specific algorithm advice acceptance : A review and directions for future research</dcterms:title>
    <dc:creator>Kaufmann, Esther</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67768"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Herrera, Nicolas</dc:contributor>
    <dc:contributor>Kaufmann, Esther</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T12:34:44Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kausel, Edgar E.</dc:contributor>
    <dc:creator>Reyes, Tomas</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:contributor>Reyes, Tomas</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T12:34:44Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Chacon, Alvaro</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen