Publikation:

Outside the Box : Abstraction-Based Monitoring of Neural Networks

Lade...
Vorschaubild

Dateien

Henzinger_2-1gbobv4s6kgjt1.pdf
Henzinger_2-1gbobv4s6kgjt1.pdfGröße: 1.56 MBDownloads: 133

Datum

2020

Autor:innen

Henzinger, Thomas A.
Lukina, Anna

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DE GIACOMO, Giuseppe, ed., Alejandro CATALA, ed., Bistra DILKINA, ed. and others. ECAI 2020 : 24th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2020, pp. 2433-2440. Frontiers in Artificial Intelligence and Applications. 325. ISSN 0922-6389. eISSN 1879-8314. ISBN 978-1-64368-100-9. Available under: doi: 10.3233/FAIA200375

Zusammenfassung

Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural networks. At runtime, inputs not falling into any of the categories learned during training cannot be classified correctly by the neural network. Existing approaches treat the neural network as a black box and try to detect novel inputs based on the confidence of the output predictions. However, neural networks are not trained to reduce their confidence for novel inputs, which limits the effectiveness of these approaches. We propose a framework to monitor a neural network by observing the hidden layers. We employ a common abstraction from program analysis - boxes - to identify novel behaviors in the monitored layers, i.e., inputs that cause behaviors outside the box. For each neuron, the boxes range over the values seen in training. The framework is efficient and flexible to achieve a desired trade-off between raising false warnings and detecting novel inputs. We illustrate the performance and the robustness to variability in the unknown classes on popular image-classification benchmarks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

24th European Conference on Artificial Intelligence - ECAI 2020, 29. Aug. 2020 - 8. Sept. 2020, Santiago de Compostela, Spain
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HENZINGER, Thomas A., Anna LUKINA, Christian SCHILLING, 2020. Outside the Box : Abstraction-Based Monitoring of Neural Networks. 24th European Conference on Artificial Intelligence - ECAI 2020. Santiago de Compostela, Spain, 29. Aug. 2020 - 8. Sept. 2020. In: DE GIACOMO, Giuseppe, ed., Alejandro CATALA, ed., Bistra DILKINA, ed. and others. ECAI 2020 : 24th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2020, pp. 2433-2440. Frontiers in Artificial Intelligence and Applications. 325. ISSN 0922-6389. eISSN 1879-8314. ISBN 978-1-64368-100-9. Available under: doi: 10.3233/FAIA200375
BibTex
@inproceedings{Henzinger2020Outsi-53573,
  year={2020},
  doi={10.3233/FAIA200375},
  title={Outside the Box : Abstraction-Based Monitoring of Neural Networks},
  number={325},
  isbn={978-1-64368-100-9},
  issn={0922-6389},
  publisher={IOS Press},
  address={Amsterdam},
  series={Frontiers in Artificial Intelligence and Applications},
  booktitle={ECAI 2020 : 24th European Conference on Artificial Intelligence},
  pages={2433--2440},
  editor={De Giacomo, Giuseppe and Catala, Alejandro and Dilkina, Bistra},
  author={Henzinger, Thomas A. and Lukina, Anna and Schilling, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53573">
    <dc:creator>Henzinger, Thomas A.</dc:creator>
    <dcterms:title>Outside the Box : Abstraction-Based Monitoring of Neural Networks</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:35:07Z</dc:date>
    <dc:contributor>Henzinger, Thomas A.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53573/1/Henzinger_2-1gbobv4s6kgjt1.pdf"/>
    <dc:creator>Schilling, Christian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Lukina, Anna</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural networks. At runtime, inputs not falling into any of the categories learned during training cannot be classified correctly by the neural network. Existing approaches treat the neural network as a black box and try to detect novel inputs based on the confidence of the output predictions. However, neural networks are not trained to reduce their confidence for novel inputs, which limits the effectiveness of these approaches. We propose a framework to monitor a neural network by observing the hidden layers. We employ a common abstraction from program analysis - boxes - to identify novel behaviors in the monitored layers, i.e., inputs that cause behaviors outside the box. For each neuron, the boxes range over the values seen in training. The framework is efficient and flexible to achieve a desired trade-off between raising false warnings and detecting novel inputs. We illustrate the performance and the robustness to variability in the unknown classes on popular image-classification benchmarks.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schilling, Christian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53573/1/Henzinger_2-1gbobv4s6kgjt1.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53573"/>
    <dc:contributor>Lukina, Anna</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:35:07Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen