Pixel Bar Charts : A New Technique for Visualizing Large Multi-Attribute Data Sets without Aggregation

Lade...
Vorschaubild
Dateien
HPL_2001_92.pdf
HPL_2001_92.pdfGröße: 529.01 KBDownloads: 454
Datum
2001
Autor:innen
Hao, Ming C.
Ladisch, Julian
Hsu, Meichun
Dayal, Umeshwar
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE Symposium on Information Visualization : INFOVIS 2001. Piscataway, NJ: IEEE, 2001, pp. 113-120. ISBN 0-7695-7342-8. Available under: doi: 10.1109/INFVIS.2001.963288
Zusammenfassung

Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data and present only a very limited number of data values (as in the case of bar charts), and may have a high degree of overlap which may occlude a significant portion of the data values (as in the case of the x-y plots). In this paper, we therefore propose a generalization of traditional bar charts and x-y-plots which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present the detailed information of the data records. Our so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. We show that, for an effective pixel placement, we have to solve complex optimization problems, and present an algorithm which efficiently solves the problem. Our application using real-world e-commerce data shows the wide applicability and usefulness of our new idea.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
pixel, bar chart, web transactions, visualization
Konferenz
IEEE Symposium on Information Visualization : INFOVIS 2001, 22. Okt. 2001 - 23. Okt. 2001, San Diego, Ca, USA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KEIM, Daniel A., Ming C. HAO, Julian LADISCH, Meichun HSU, Umeshwar DAYAL, 2001. Pixel Bar Charts : A New Technique for Visualizing Large Multi-Attribute Data Sets without Aggregation. IEEE Symposium on Information Visualization : INFOVIS 2001. San Diego, Ca, USA, 22. Okt. 2001 - 23. Okt. 2001. In: IEEE Symposium on Information Visualization : INFOVIS 2001. Piscataway, NJ: IEEE, 2001, pp. 113-120. ISBN 0-7695-7342-8. Available under: doi: 10.1109/INFVIS.2001.963288
BibTex
@inproceedings{Keim2001Pixel-5796,
  year={2001},
  doi={10.1109/INFVIS.2001.963288},
  title={Pixel Bar Charts : A New Technique for Visualizing Large Multi-Attribute Data Sets without Aggregation},
  isbn={0-7695-7342-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={IEEE Symposium on Information Visualization : INFOVIS 2001},
  pages={113--120},
  author={Keim, Daniel A. and Hao, Ming C. and Ladisch, Julian and Hsu, Meichun and Dayal, Umeshwar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5796">
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:09Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:format>application/pdf</dc:format>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:09Z</dc:date>
    <dcterms:issued>2001</dcterms:issued>
    <dcterms:title>Pixel Bar Charts : A New Technique for Visualizing Large Multi-Attribute Data Sets without Aggregation</dcterms:title>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data and present only a very limited number of data values (as in the case of bar charts), and may have a high degree of overlap which may occlude a significant portion of the data values (as in the case of the x-y plots). In this paper, we therefore propose a generalization of traditional bar charts and x-y-plots which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present the detailed information of the data records. Our so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. We show that, for an effective pixel placement, we have to solve complex optimization problems, and present an algorithm which efficiently solves the problem. Our application using real-world e-commerce data shows the wide applicability and usefulness of our new idea.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5796"/>
    <dc:creator>Hsu, Meichun</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hsu, Meichun</dc:contributor>
    <dc:creator>Ladisch, Julian</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ladisch, Julian</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5796/1/HPL_2001_92.pdf"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5796/1/HPL_2001_92.pdf"/>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>Paper presented for: IEEE Visualization Conference 12 (2001), Oct. 21 - 26, San Diego, Calif., USA</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen