Publikation: Visual Data Mining of Large Spatial Data Sets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Extraction of interesting knowledge from large spatial databases is an important task in the development of spatial database systems. Spatial data mining is the branch of data mining that deals with spatial (location) data. Analyzing the huge amount (usually terabytes) of spatial data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics etc. is, however, a very difficult task. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially the area of analyzing spatial data. We provide some examples for effective visualizations of spatial data in important application areas such as consumer analysis, e-mail traffic analysis, and census demographics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Christian PANSE, Mike SIPS, 2003. Visual Data Mining of Large Spatial Data Sets. In: BIANCHI-BERTHOUZE, Nadia, ed.. Databases in networked information systems : third International Workshop, DNIS 2003, Aizu, Japan, September 22 - 24, 2003. Berlin [u.a.]: Springer, 2003, pp. 201-215. Lecture notes in computer science. 2822. ISBN 978-3-540-20111-3BibTex
@inproceedings{Keim2003Visua-5655, year={2003}, title={Visual Data Mining of Large Spatial Data Sets}, number={2822}, isbn={978-3-540-20111-3}, publisher={Springer}, address={Berlin [u.a.]}, series={Lecture notes in computer science}, booktitle={Databases in networked information systems : third International Workshop, DNIS 2003, Aizu, Japan, September 22 - 24, 2003}, pages={201--215}, editor={Bianchi-Berthouze, Nadia}, author={Keim, Daniel A. and Panse, Christian and Sips, Mike} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5655"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5655"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Panse, Christian</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science, No 2822 (2003), pp. 201-215</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Sips, Mike</dc:creator> <dc:creator>Panse, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:32Z</dcterms:available> <dcterms:title>Visual Data Mining of Large Spatial Data Sets</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:format>application/pdf</dc:format> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:32Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5655/1/dnis2003.pdf"/> <dc:contributor>Sips, Mike</dc:contributor> <dcterms:abstract xml:lang="eng">Extraction of interesting knowledge from large spatial databases is an important task in the development of spatial database systems. Spatial data mining is the branch of data mining that deals with spatial (location) data. Analyzing the huge amount (usually terabytes) of spatial data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics etc. is, however, a very difficult task. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially the area of analyzing spatial data. We provide some examples for effective visualizations of spatial data in important application areas such as consumer analysis, e-mail traffic analysis, and census demographics.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2003</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5655/1/dnis2003.pdf"/> </rdf:Description> </rdf:RDF>