Publikation:

Visual Data Mining of Large Spatial Data Sets

Lade...
Vorschaubild

Dateien

dnis2003.pdf
dnis2003.pdfGröße: 862.11 KBDownloads: 266

Datum

2003

Autor:innen

Panse, Christian
Sips, Mike

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BIANCHI-BERTHOUZE, Nadia, ed.. Databases in networked information systems : third International Workshop, DNIS 2003, Aizu, Japan, September 22 - 24, 2003. Berlin [u.a.]: Springer, 2003, pp. 201-215. Lecture notes in computer science. 2822. ISBN 978-3-540-20111-3

Zusammenfassung

Extraction of interesting knowledge from large spatial databases is an important task in the development of spatial database systems. Spatial data mining is the branch of data mining that deals with spatial (location) data. Analyzing the huge amount (usually terabytes) of spatial data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics etc. is, however, a very difficult task. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially the area of analyzing spatial data. We provide some examples for effective visualizations of spatial data in important application areas such as consumer analysis, e-mail traffic analysis, and census demographics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Information Visualization, Visual Data Mining, Visualization of Spatial Data, Visualization and Cartography, Spatial Data Mining

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Christian PANSE, Mike SIPS, 2003. Visual Data Mining of Large Spatial Data Sets. In: BIANCHI-BERTHOUZE, Nadia, ed.. Databases in networked information systems : third International Workshop, DNIS 2003, Aizu, Japan, September 22 - 24, 2003. Berlin [u.a.]: Springer, 2003, pp. 201-215. Lecture notes in computer science. 2822. ISBN 978-3-540-20111-3
BibTex
@inproceedings{Keim2003Visua-5655,
  year={2003},
  title={Visual Data Mining of Large Spatial Data Sets},
  number={2822},
  isbn={978-3-540-20111-3},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture notes in computer science},
  booktitle={Databases in networked information systems : third International Workshop, DNIS 2003, Aizu, Japan, September 22 - 24, 2003},
  pages={201--215},
  editor={Bianchi-Berthouze, Nadia},
  author={Keim, Daniel A. and Panse, Christian and Sips, Mike}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5655">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5655"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science, No 2822 (2003), pp. 201-215</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sips, Mike</dc:creator>
    <dc:creator>Panse, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:32Z</dcterms:available>
    <dcterms:title>Visual Data Mining of Large Spatial Data Sets</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:32Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5655/1/dnis2003.pdf"/>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dcterms:abstract xml:lang="eng">Extraction of interesting knowledge from large spatial databases is an important task in the development of spatial database systems. Spatial data mining is the branch of data mining that deals with spatial (location) data. Analyzing the huge amount (usually terabytes) of spatial data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics etc. is, however, a very difficult task. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially the area of analyzing spatial data. We provide some examples for effective visualizations of spatial data in important application areas such as consumer analysis, e-mail traffic analysis, and census demographics.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:issued>2003</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5655/1/dnis2003.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen