Publikation:

Situation monitoring of urban areas using social media data streams

Lade...
Vorschaubild

Dateien

Weiler_0-311359.pdf
Weiler_0-311359.pdfGröße: 1.14 MBDownloads: 511

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Systems. 2016, 57, pp. 129-141. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2015.09.004

Zusammenfassung

The continuous growth of social networks and the active use of social media services result in massive amounts of user-generated data. Our goal is to leverage social media users as “social sensors” in order to increase the situational awareness within and about urban areas. In addition to the well-known challenges of event and topic detection and tracking, this task involves a spatial and temporal dimension. In this paper, we present a visualization that supports analysts in monitoring events/topics and emotions both in time and in space. The visualization uses a clock-face metaphor to encode temporal and spatial relationships, a color map to reflect emotion, and tag clouds for events and topics. A hierarchy of these clock-faces supports drilling down to finer levels of granularity as well as rolling up the vast and fast flow of information. In order to showcase these functionalities of our visualization, we discuss several case studies that use the live data stream of the Twitter microblogging service. Finally, we demonstrate the usefulness and usability of the visualization in a user study that we conducted.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Urban situation visualization, Event and topic detection and tracking, Twitter social data stream

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2016. Situation monitoring of urban areas using social media data streams. In: Information Systems. 2016, 57, pp. 129-141. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2015.09.004
BibTex
@article{Weiler2016-04Situa-32343,
  year={2016},
  doi={10.1016/j.is.2015.09.004},
  title={Situation monitoring of urban areas using social media data streams},
  volume={57},
  issn={0306-4379},
  journal={Information Systems},
  pages={129--141},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32343">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-04T12:38:10Z</dc:date>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32343"/>
    <dcterms:title>Situation monitoring of urban areas using social media data streams</dcterms:title>
    <dcterms:issued>2016-04</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32343/1/Weiler_0-311359.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-04T12:38:10Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32343/1/Weiler_0-311359.pdf"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dcterms:abstract xml:lang="eng">The continuous growth of social networks and the active use of social media services result in massive amounts of user-generated data. Our goal is to leverage social media users as “social sensors” in order to increase the situational awareness within and about urban areas. In addition to the well-known challenges of event and topic detection and tracking, this task involves a spatial and temporal dimension. In this paper, we present a visualization that supports analysts in monitoring events/topics and emotions both in time and in space. The visualization uses a clock-face metaphor to encode temporal and spatial relationships, a color map to reflect emotion, and tag clouds for events and topics. A hierarchy of these clock-faces supports drilling down to finer levels of granularity as well as rolling up the vast and fast flow of information. In order to showcase these functionalities of our visualization, we discuss several case studies that use the live data stream of the Twitter microblogging service. Finally, we demonstrate the usefulness and usability of the visualization in a user study that we conducted.</dcterms:abstract>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen