Publikation:

Rating Inference for Custom Trips from Enriched GPS Traces using Random Forests

Lade...
Vorschaubild

Dateien

Chondrogiannis_2-1g2d9nt7zsg2f5.PDF
Chondrogiannis_2-1g2d9nt7zsg2f5.PDFGröße: 990.4 KBDownloads: 3

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. New York: ACM, 2023. Verfügbar unter: doi: 10.1145/3615896.3628344

Zusammenfassung

Trip planning services are employed extensively by users to compute paths between locations for many different use cases, including commuting to work, transportation of goods, and itinerary planning for tourists. In many scenarios, such as planning for a hiking trip, running training, or mountain cycling, it is desirable to provide users with personalized trips according to their preferences. Existing route planning systems for mountain activities recommend user-posted trips, along with ratings w.r.t. the route’s difficulty, condition, or enjoyment it provides. However, users often want to define a specific trip by choosing the segments/trails they want to follow. Existing systems do not provide a rating for such trips, thus suffering from the cold-start problem. Also, the efforts to automatically infer such a rating have been limited. In this paper, we study the problem of inferring ratings for custom trips. We propose a machine-learning framework that encodes various rated trip features and employs random forest classifiers to infer ratings. We conduct feature engineering to encode information regarding a) trip location, b) trip elevation profile, c) closeness to points of interest, and d) closeness to locations of geotagged photos. Finally, we present the results of an ablation study on two real-world data sets and five different ratings. We evaluate the efficiency of our proposed approach and the effect each feature has on the rating inference accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Trip recommendation, mapping services, random forests

Konferenz

LocalRec '23: 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising, 13. Nov. 2023, Hamburg
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHONDROGIANNIS, Theodoros, Mouzhi GE, 2023. Rating Inference for Custom Trips from Enriched GPS Traces using Random Forests. LocalRec '23: 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. Hamburg, 13. Nov. 2023. In: Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. New York: ACM, 2023. Verfügbar unter: doi: 10.1145/3615896.3628344
BibTex
@inproceedings{Chondrogiannis2023-11-13Ratin-70257,
  year={2023},
  doi={10.1145/3615896.3628344},
  title={Rating Inference for Custom Trips from Enriched GPS Traces using Random Forests},
  publisher={ACM},
  address={New York},
  booktitle={Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising},
  author={Chondrogiannis, Theodoros and Ge, Mouzhi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70257">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70257/1/Chondrogiannis_2-1g2d9nt7zsg2f5.PDF"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70257"/>
    <dc:creator>Chondrogiannis, Theodoros</dc:creator>
    <dcterms:issued>2023-11-13</dcterms:issued>
    <dc:contributor>Ge, Mouzhi</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-26T08:31:02Z</dc:date>
    <dcterms:title>Rating Inference for Custom Trips from Enriched GPS Traces using Random Forests</dcterms:title>
    <dc:creator>Ge, Mouzhi</dc:creator>
    <dcterms:abstract>Trip planning services are employed extensively by users to compute paths between locations for many different use cases, including commuting to work, transportation of goods, and itinerary planning for tourists. In many scenarios, such as planning for a hiking trip, running training, or mountain cycling, it is desirable to provide users with personalized trips according to their preferences. Existing route planning systems for mountain activities recommend user-posted trips, along with ratings w.r.t. the route’s difficulty, condition, or enjoyment it provides. However, users often want to define a specific trip by choosing the segments/trails they want to follow. Existing systems do not provide a rating for such trips, thus suffering from the cold-start problem. Also, the efforts to automatically infer such a rating have been limited. In this paper, we study the problem of inferring ratings for custom trips. We propose a machine-learning framework that encodes various rated trip features and employs random forest classifiers to infer ratings. We conduct feature engineering to encode information regarding a) trip location, b) trip elevation profile, c) closeness to points of interest, and d) closeness to locations of geotagged photos. Finally, we present the results of an ablation study on two real-world data sets and five different ratings. We evaluate the efficiency of our
proposed approach and the effect each feature has on the rating inference accuracy.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70257/1/Chondrogiannis_2-1g2d9nt7zsg2f5.PDF"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-26T08:31:02Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen