Publikation: Split embedding problems over the open arithmetic disc
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Paran, Elan
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Transactions of the American Mathematical Society. 2014, 366(7), pp. 3535-3551. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/S0002-9947-2014-05931-X
Zusammenfassung
Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of OK{t}, where OK is the ring of integers of an arbitrary number field K.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FEHM, Arno, Elan PARAN, 2014. Split embedding problems over the open arithmetic disc. In: Transactions of the American Mathematical Society. 2014, 366(7), pp. 3535-3551. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/S0002-9947-2014-05931-XBibTex
@article{Fehm2014Split-29283, year={2014}, doi={10.1090/S0002-9947-2014-05931-X}, title={Split embedding problems over the open arithmetic disc}, number={7}, volume={366}, issn={0002-9947}, journal={Transactions of the American Mathematical Society}, pages={3535--3551}, author={Fehm, Arno and Paran, Elan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29283"> <dcterms:abstract xml:lang="eng">Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O<sub>K</sub>{t}, where O<sub>K</sub> is the ring of integers of an arbitrary number field K.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29283"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Split embedding problems over the open arithmetic disc</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Fehm, Arno</dc:creator> <dc:contributor>Paran, Elan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-24T16:04:27Z</dc:date> <dc:creator>Paran, Elan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-24T16:04:27Z</dcterms:available> <dc:contributor>Fehm, Arno</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja