Publikation:

Split embedding problems over the open arithmetic disc

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Paran, Elan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Transactions of the American Mathematical Society. 2014, 366(7), pp. 3535-3551. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/S0002-9947-2014-05931-X

Zusammenfassung

Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of OK{t}, where OK is the ring of integers of an arbitrary number field K.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEHM, Arno, Elan PARAN, 2014. Split embedding problems over the open arithmetic disc. In: Transactions of the American Mathematical Society. 2014, 366(7), pp. 3535-3551. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/S0002-9947-2014-05931-X
BibTex
@article{Fehm2014Split-29283,
  year={2014},
  doi={10.1090/S0002-9947-2014-05931-X},
  title={Split embedding problems over the open arithmetic disc},
  number={7},
  volume={366},
  issn={0002-9947},
  journal={Transactions of the American Mathematical Society},
  pages={3535--3551},
  author={Fehm, Arno and Paran, Elan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29283">
    <dcterms:abstract xml:lang="eng">Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O&lt;sub&gt;K&lt;/sub&gt;{t}, where O&lt;sub&gt;K&lt;/sub&gt; is the ring of integers of an arbitrary number field K.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29283"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Split embedding problems over the open arithmetic disc</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Fehm, Arno</dc:creator>
    <dc:contributor>Paran, Elan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-24T16:04:27Z</dc:date>
    <dc:creator>Paran, Elan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-24T16:04:27Z</dcterms:available>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen