Publikation:

Evaluating Mixed and Augmented Reality : A Systematic Literature Review (2009-2019)

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Merino, Leonel
Schwarzl, Magdalena
Sedlmair, Michael
Schmalstieg, Dieter
Weiskopf, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2020 IEEE International Symposium on Mixed and Augmented Reality : ISMAR 2020 : Proceedings. Piscataway, NJ: IEEE, 2020, pp. 438-451. ISBN 978-1-72818-508-8. Available under: doi: 10.1109/ISMAR50242.2020.00069

Zusammenfassung

We present a systematic review of 45S papers that report on evaluations in mixed and augmented reality (MR/AR) published in ISMAR, CHI, IEEE VR, and UIST over a span of 11 years (2009-2019). Our goal is to provide guidance for future evaluations of MR/AR approaches. To this end, we characterize publications by paper type (e.g., technique, design study), research topic (e.g., tracking, rendering), evaluation scenario (e.g., algorithm performance, user performance), cognitive aspects (e.g., perception, emotion), and the context in which evaluations were conducted (e.g., lab vs. in-thewild). We found a strong coupling of types, topics, and scenarios. We observe two groups: (a) technology-centric performance evaluations of algorithms that focus on improving tracking, displays, reconstruction, rendering, and calibration, and (b) human-centric studies that analyze implications of applications and design, human factors on perception, usability, decision making, emotion, and attention. Amongst the 458 papers, we identified 248 user studies that involved 5,761 participants in total, of whom only 1,619 were identified as female. We identified 43 data collection methods used to analyze 10 cognitive aspects. We found nine objective methods, and eight methods that support qualitative analysis. A majority (216/248) of user studies are conducted in a laboratory setting. Often (138/248), such studies involve participants in a static way. However, we also found a fair number (30/248) of in-the-wild studies that involve participants in a mobile fashion. We consider this paper to be relevant to academia and industry alike in presenting the state-of-the-art and guiding the steps to designing, conducting, and analyzing results of evaluations in MR/AR.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Symposium on Mixed and Augmented Reality (ISMAR), 9. Nov. 2020 - 13. Nov. 2020, Porto de Galinhas, Brazil
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MERINO, Leonel, Magdalena SCHWARZL, Matthias KRAUS, Michael SEDLMAIR, Dieter SCHMALSTIEG, Daniel WEISKOPF, 2020. Evaluating Mixed and Augmented Reality : A Systematic Literature Review (2009-2019). International Symposium on Mixed and Augmented Reality (ISMAR). Porto de Galinhas, Brazil, 9. Nov. 2020 - 13. Nov. 2020. In: 2020 IEEE International Symposium on Mixed and Augmented Reality : ISMAR 2020 : Proceedings. Piscataway, NJ: IEEE, 2020, pp. 438-451. ISBN 978-1-72818-508-8. Available under: doi: 10.1109/ISMAR50242.2020.00069
BibTex
@inproceedings{Merino2020Evalu-55967,
  year={2020},
  doi={10.1109/ISMAR50242.2020.00069},
  title={Evaluating Mixed and Augmented Reality : A Systematic Literature Review (2009-2019)},
  isbn={978-1-72818-508-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2020 IEEE International Symposium on Mixed and Augmented Reality : ISMAR 2020 : Proceedings},
  pages={438--451},
  author={Merino, Leonel and Schwarzl, Magdalena and Kraus, Matthias and Sedlmair, Michael and Schmalstieg, Dieter and Weiskopf, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55967">
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T14:25:06Z</dcterms:available>
    <dc:contributor>Merino, Leonel</dc:contributor>
    <dc:creator>Kraus, Matthias</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Evaluating Mixed and Augmented Reality : A Systematic Literature Review (2009-2019)</dcterms:title>
    <dc:contributor>Schmalstieg, Dieter</dc:contributor>
    <dc:creator>Merino, Leonel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:creator>Schmalstieg, Dieter</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T14:25:06Z</dc:date>
    <dc:creator>Schwarzl, Magdalena</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55967"/>
    <dcterms:abstract xml:lang="eng">We present a systematic review of 45S papers that report on evaluations in mixed and augmented reality (MR/AR) published in ISMAR, CHI, IEEE VR, and UIST over a span of 11 years (2009-2019). Our goal is to provide guidance for future evaluations of MR/AR approaches. To this end, we characterize publications by paper type (e.g., technique, design study), research topic (e.g., tracking, rendering), evaluation scenario (e.g., algorithm performance, user performance), cognitive aspects (e.g., perception, emotion), and the context in which evaluations were conducted (e.g., lab vs. in-thewild). We found a strong coupling of types, topics, and scenarios. We observe two groups: (a) technology-centric performance evaluations of algorithms that focus on improving tracking, displays, reconstruction, rendering, and calibration, and (b) human-centric studies that analyze implications of applications and design, human factors on perception, usability, decision making, emotion, and attention. Amongst the 458 papers, we identified 248 user studies that involved 5,761 participants in total, of whom only 1,619 were identified as female. We identified 43 data collection methods used to analyze 10 cognitive aspects. We found nine objective methods, and eight methods that support qualitative analysis. A majority (216/248) of user studies are conducted in a laboratory setting. Often (138/248), such studies involve participants in a static way. However, we also found a fair number (30/248) of in-the-wild studies that involve participants in a mobile fashion. We consider this paper to be relevant to academia and industry alike in presenting the state-of-the-art and guiding the steps to designing, conducting, and analyzing results of evaluations in MR/AR.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schwarzl, Magdalena</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen