Publikation: Silica biomorphs : complex biomimetic hybrid materials from "Sand and Chalk"
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Biomineralization can afford crystal frameworks of great diversity and utmost complexity, frequently featuring hierarchical structures and morphologies beyond any crystallographic restrictions. The formation of such architectures is usually directed by organic molecules or matrices, which modify crystallization in a deliberate manner. Their influence often leads to sinuous forms, which, by intuition, suggest the presence of life and distinguish these minerals from their inanimate, mostly euhedral counterparts. However, such a strict distinction does not hold. In fact, smooth curvature and higher-order structuring can occur also in purely inorganic environments: simply by precipitating alkaline earth carbonates in silica-containing media, aggregates of highly oriented carbonate nanocrystals can be obtained that display striking noncrystallographic morphologies such as regular helicoids. Thereby, individual crystallites as well as the entire assembly are sheathed by amorphous silica, thus giving a composite material with various levels of hierarchy. These exceptional forms, called "silica biomorphs", self-assemble through a bottom-up process, which relies on local variations in the conditions and is driven by a pH-based coupling of the carbonate and silicate. Here, we review recent progress in the field of silica biomorphs with particular focus on their mechanism of formation, provide insight into structural details at different length scales, and discuss implications of these biomimetic crystal aggregates for both primitive life detection and materials science.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KELLERMEIER, Matthias, Helmut CÖLFEN, Juan Manuel GARCÍA-RUIZ, 2012. Silica biomorphs : complex biomimetic hybrid materials from "Sand and Chalk". In: European Journal of Inorganic Chemistry. 2012, 2012(32), pp. 5123-5144. ISSN 1434-1948. eISSN 1099-0682. Available under: doi: 10.1002/ejic.201201029BibTex
@article{Kellermeier2012Silic-22624, year={2012}, doi={10.1002/ejic.201201029}, title={Silica biomorphs : complex biomimetic hybrid materials from "Sand and Chalk"}, number={32}, volume={2012}, issn={1434-1948}, journal={European Journal of Inorganic Chemistry}, pages={5123--5144}, author={Kellermeier, Matthias and Cölfen, Helmut and García-Ruiz, Juan Manuel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22624"> <dc:creator>Cölfen, Helmut</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22624/2/Kellermeier_226245.pdf"/> <dc:language>eng</dc:language> <dc:contributor>García-Ruiz, Juan Manuel</dc:contributor> <dc:contributor>Kellermeier, Matthias</dc:contributor> <dc:creator>Kellermeier, Matthias</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22624/2/Kellermeier_226245.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-24T19:44:08Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>García-Ruiz, Juan Manuel</dc:creator> <dcterms:issued>2012</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>European Journal of Inorganic Chemistry ; 32 (2012). - S. 5123-5144</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Cölfen, Helmut</dc:contributor> <dcterms:title>Silica biomorphs : complex biomimetic hybrid materials from "Sand and Chalk"</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22624"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-24T19:44:08Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:abstract xml:lang="eng">Biomineralization can afford crystal frameworks of great diversity and utmost complexity, frequently featuring hierarchical structures and morphologies beyond any crystallographic restrictions. The formation of such architectures is usually directed by organic molecules or matrices, which modify crystallization in a deliberate manner. Their influence often leads to sinuous forms, which, by intuition, suggest the presence of life and distinguish these minerals from their inanimate, mostly euhedral counterparts. However, such a strict distinction does not hold. In fact, smooth curvature and higher-order structuring can occur also in purely inorganic environments: simply by precipitating alkaline earth carbonates in silica-containing media, aggregates of highly oriented carbonate nanocrystals can be obtained that display striking noncrystallographic morphologies such as regular helicoids. Thereby, individual crystallites as well as the entire assembly are sheathed by amorphous silica, thus giving a composite material with various levels of hierarchy. These exceptional forms, called "silica biomorphs", self-assemble through a bottom-up process, which relies on local variations in the conditions and is driven by a pH-based coupling of the carbonate and silicate. Here, we review recent progress in the field of silica biomorphs with particular focus on their mechanism of formation, provide insight into structural details at different length scales, and discuss implications of these biomimetic crystal aggregates for both primitive life detection and materials science.</dcterms:abstract> </rdf:Description> </rdf:RDF>