Large data solutions to the viscous quantum hydrodynamic model with barrier potential

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical Methods in the Applied Sciences. 2016, 39(11), pp. 3016-3034. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3749
Zusammenfassung

We discuss analytically the stationary viscous quantum hydrodynamic model including a barrier potential, which is a nonlinear system of partial differential equations of mixed order in the sense of Douglis–Nirenberg. Combining a reformulation by means of an adjusted Fermi level, a variational functional, and a fixed point problem, we prove the existence of a weak solution. There are no assumptions on the size of the given data or their variation. We also provide various estimates of the solution that are independent of the quantum parameters.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DREHER, Michael, Johannes SCHNUR, 2016. Large data solutions to the viscous quantum hydrodynamic model with barrier potential. In: Mathematical Methods in the Applied Sciences. 2016, 39(11), pp. 3016-3034. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3749
BibTex
@article{Dreher2016Large-35380,
  year={2016},
  doi={10.1002/mma.3749},
  title={Large data solutions to the viscous quantum hydrodynamic model with barrier potential},
  number={11},
  volume={39},
  issn={0170-4214},
  journal={Mathematical Methods in the Applied Sciences},
  pages={3016--3034},
  author={Dreher, Michael and Schnur, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35380">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schnur, Johannes</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Large data solutions to the viscous quantum hydrodynamic model with barrier potential</dcterms:title>
    <dcterms:issued>2016</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-22T08:55:16Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35380"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-22T08:55:16Z</dc:date>
    <dc:creator>Dreher, Michael</dc:creator>
    <dcterms:abstract xml:lang="eng">We discuss analytically the stationary viscous quantum hydrodynamic model including a barrier potential, which is a nonlinear system of partial differential equations of mixed order in the sense of Douglis–Nirenberg. Combining a reformulation by means of an adjusted Fermi level, a variational functional, and a fixed point problem, we prove the existence of a weak solution. There are no assumptions on the size of the given data or their variation. We also provide various estimates of the solution that are independent of the quantum parameters.</dcterms:abstract>
    <dc:creator>Schnur, Johannes</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Dreher, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet