Publikation: Optical rectification and field enhancement in a plasmonic nanogap
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Metal nanostructures act as powerful optical antennas1, 2 because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps between plasmonically active nanostructures3, 4, but it is extremely challenging to measure the fields in such gaps directly. These enhanced fields have applications in surface-enhanced spectroscopies5, 6, 7, nonlinear optics1, 8, 9, 10 and nanophotonics11, 12, 13, 14, 15. Here we show that nonlinear tunnelling conduction between gold electrodes separated by a subnanometre gap leads to optical rectification, producing a d.c. photocurrent when the gap is illuminated. Comparing this photocurrent with low-frequency conduction measurements, we determine the optical frequency voltage across the tunnelling region of the nanogap, and also the enhancement of the electric field in the tunnelling region, as a function of gap size. The measured field enhancements exceed 1,000, consistent with estimates from surface-enhanced Raman measurements16, 17, 18. Our results highlight the need for more realistic theoretical approaches that are able to model the electromagnetic response of metal nanostructures on scales ranging from the free-space wavelength, λ, down to ~λ/1,000, and for experiments with new materials, different wavelengths and different incident polarizations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WARD, Daniel R., Falco HÜSER, Fabian PAULY, Juan Carlos CUEVAS, Douglas NATELSON, 2010. Optical rectification and field enhancement in a plasmonic nanogap. In: Nature Nanotechnology. 2010, 5(10), pp. 732-736. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2010.176BibTex
@article{Ward2010-10Optic-21131, year={2010}, doi={10.1038/nnano.2010.176}, title={Optical rectification and field enhancement in a plasmonic nanogap}, number={10}, volume={5}, issn={1748-3387}, journal={Nature Nanotechnology}, pages={732--736}, author={Ward, Daniel R. and Hüser, Falco and Pauly, Fabian and Cuevas, Juan Carlos and Natelson, Douglas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21131"> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Natelson, Douglas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Natelson, Douglas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-07T08:33:46Z</dc:date> <dc:creator>Ward, Daniel R.</dc:creator> <dc:contributor>Cuevas, Juan Carlos</dc:contributor> <dc:contributor>Ward, Daniel R.</dc:contributor> <dcterms:title>Optical rectification and field enhancement in a plasmonic nanogap</dcterms:title> <dc:creator>Hüser, Falco</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21131/1/ward_211318.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21131"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2010-10</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21131/1/ward_211318.pdf"/> <dcterms:abstract xml:lang="eng">Metal nanostructures act as powerful optical antennas1, 2 because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps between plasmonically active nanostructures3, 4, but it is extremely challenging to measure the fields in such gaps directly. These enhanced fields have applications in surface-enhanced spectroscopies5, 6, 7, nonlinear optics1, 8, 9, 10 and nanophotonics11, 12, 13, 14, 15. Here we show that nonlinear tunnelling conduction between gold electrodes separated by a subnanometre gap leads to optical rectification, producing a d.c. photocurrent when the gap is illuminated. Comparing this photocurrent with low-frequency conduction measurements, we determine the optical frequency voltage across the tunnelling region of the nanogap, and also the enhancement of the electric field in the tunnelling region, as a function of gap size. The measured field enhancements exceed 1,000, consistent with estimates from surface-enhanced Raman measurements16, 17, 18. Our results highlight the need for more realistic theoretical approaches that are able to model the electromagnetic response of metal nanostructures on scales ranging from the free-space wavelength, λ, down to ~λ/1,000, and for experiments with new materials, different wavelengths and different incident polarizations.</dcterms:abstract> <dc:creator>Cuevas, Juan Carlos</dc:creator> <dc:contributor>Pauly, Fabian</dc:contributor> <dc:creator>Pauly, Fabian</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-07T08:33:46Z</dcterms:available> <dcterms:bibliographicCitation>Nature Nanotechnology ; 5 (2010), 10. - S. 732-736</dcterms:bibliographicCitation> <dc:contributor>Hüser, Falco</dc:contributor> </rdf:Description> </rdf:RDF>