Publikation:

Optical rectification and field enhancement in a plasmonic nanogap

Lade...
Vorschaubild

Dateien

ward_211318.pdf
ward_211318.pdfGröße: 2.64 MBDownloads: 445

Datum

2010

Autor:innen

Ward, Daniel R.
Hüser, Falco
Natelson, Douglas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Nanotechnology. 2010, 5(10), pp. 732-736. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2010.176

Zusammenfassung

Metal nanostructures act as powerful optical antennas1, 2 because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps between plasmonically active nanostructures3, 4, but it is extremely challenging to measure the fields in such gaps directly. These enhanced fields have applications in surface-enhanced spectroscopies5, 6, 7, nonlinear optics1, 8, 9, 10 and nanophotonics11, 12, 13, 14, 15. Here we show that nonlinear tunnelling conduction between gold electrodes separated by a subnanometre gap leads to optical rectification, producing a d.c. photocurrent when the gap is illuminated. Comparing this photocurrent with low-frequency conduction measurements, we determine the optical frequency voltage across the tunnelling region of the nanogap, and also the enhancement of the electric field in the tunnelling region, as a function of gap size. The measured field enhancements exceed 1,000, consistent with estimates from surface-enhanced Raman measurements16, 17, 18. Our results highlight the need for more realistic theoretical approaches that are able to model the electromagnetic response of metal nanostructures on scales ranging from the free-space wavelength, λ, down to ~λ/1,000, and for experiments with new materials, different wavelengths and different incident polarizations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WARD, Daniel R., Falco HÜSER, Fabian PAULY, Juan Carlos CUEVAS, Douglas NATELSON, 2010. Optical rectification and field enhancement in a plasmonic nanogap. In: Nature Nanotechnology. 2010, 5(10), pp. 732-736. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2010.176
BibTex
@article{Ward2010-10Optic-21131,
  year={2010},
  doi={10.1038/nnano.2010.176},
  title={Optical rectification and field enhancement in a plasmonic nanogap},
  number={10},
  volume={5},
  issn={1748-3387},
  journal={Nature Nanotechnology},
  pages={732--736},
  author={Ward, Daniel R. and Hüser, Falco and Pauly, Fabian and Cuevas, Juan Carlos and Natelson, Douglas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21131">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Natelson, Douglas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Natelson, Douglas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-07T08:33:46Z</dc:date>
    <dc:creator>Ward, Daniel R.</dc:creator>
    <dc:contributor>Cuevas, Juan Carlos</dc:contributor>
    <dc:contributor>Ward, Daniel R.</dc:contributor>
    <dcterms:title>Optical rectification and field enhancement in a plasmonic nanogap</dcterms:title>
    <dc:creator>Hüser, Falco</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21131/1/ward_211318.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21131"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2010-10</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21131/1/ward_211318.pdf"/>
    <dcterms:abstract xml:lang="eng">Metal nanostructures act as powerful optical antennas1, 2 because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps between plasmonically active nanostructures3, 4, but it is extremely challenging to measure the fields in such gaps directly. These enhanced fields have applications in surface-enhanced spectroscopies5, 6, 7, nonlinear optics1, 8, 9, 10 and nanophotonics11, 12, 13, 14, 15. Here we show that nonlinear tunnelling conduction between gold electrodes separated by a subnanometre gap leads to optical rectification, producing a d.c. photocurrent when the gap is illuminated. Comparing this photocurrent with low-frequency conduction measurements, we determine the optical frequency voltage across the tunnelling region of the nanogap, and also the enhancement of the electric field in the tunnelling region, as a function of gap size. The measured field enhancements exceed 1,000, consistent with estimates from surface-enhanced Raman measurements16, 17, 18. Our results highlight the need for more realistic theoretical approaches that are able to model the electromagnetic response of metal nanostructures on scales ranging from the free-space wavelength, λ, down to ~λ/1,000, and for experiments with new materials, different wavelengths and different incident polarizations.</dcterms:abstract>
    <dc:creator>Cuevas, Juan Carlos</dc:creator>
    <dc:contributor>Pauly, Fabian</dc:contributor>
    <dc:creator>Pauly, Fabian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-07T08:33:46Z</dcterms:available>
    <dcterms:bibliographicCitation>Nature Nanotechnology ; 5 (2010), 10. - S. 732-736</dcterms:bibliographicCitation>
    <dc:contributor>Hüser, Falco</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen