Publikation: Interactive Ambiguity Resolution of Named Entities in Fictional Literature
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Named entity recognition (NER) denotes the task to detect entities and their corresponding classes, such as person or location, in unstructured text data. For most applications, state of the art NER software is producing reasonable results. However, as a consequence of the methodological limitations and the well-known pitfalls when analyzing natural language data, the NER results are likely to contain ambiguities. In this paper, we present an interactive NER ambiguity resolution technique, which enables users to create (post-processing) rules for named entity recognition data based on the content and entity context of the analyzed documents. We specifically address the problem that in use-cases where ambiguities are problematic, such as the attribution of fictional characters with traits, it is often unfeasible to train models on custom data to improve state of the art NER software. We derive an iterative process model for improving NER results, show an interactive NER ambiguity resolution prototype, illustrate our approach with contemporary literature, and discuss our work and future research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STOFFEL, Florian, Wolfgang JENTNER, Michael BEHRISCH, Johannes FUCHS, Daniel A. KEIM, 2017. Interactive Ambiguity Resolution of Named Entities in Fictional Literature. Eurographics Conference on Visualization (EuroVis) 2017. Barcelona, 12. Juni 2017 - 16. Juni 2017. In: HEER, Jeffrey, ed. and others. EuroVis 2017 Eurographics / IEEE VGTC Conference on Visualization 2017. 2017, pp. 189-200. Computer Graphics Forum. 36,3. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13179BibTex
@inproceedings{Stoffel2017-07-04Inter-39654, year={2017}, doi={10.1111/cgf.13179}, title={Interactive Ambiguity Resolution of Named Entities in Fictional Literature}, number={36,3}, issn={0167-7055}, series={Computer Graphics Forum}, booktitle={EuroVis 2017 Eurographics / IEEE VGTC Conference on Visualization 2017}, pages={189--200}, editor={Heer, Jeffrey}, author={Stoffel, Florian and Jentner, Wolfgang and Behrisch, Michael and Fuchs, Johannes and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39654"> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Jentner, Wolfgang</dc:creator> <dcterms:abstract xml:lang="eng">Named entity recognition (NER) denotes the task to detect entities and their corresponding classes, such as person or location, in unstructured text data. For most applications, state of the art NER software is producing reasonable results. However, as a consequence of the methodological limitations and the well-known pitfalls when analyzing natural language data, the NER results are likely to contain ambiguities. In this paper, we present an interactive NER ambiguity resolution technique, which enables users to create (post-processing) rules for named entity recognition data based on the content and entity context of the analyzed documents. We specifically address the problem that in use-cases where ambiguities are problematic, such as the attribution of fictional characters with traits, it is often unfeasible to train models on custom data to improve state of the art NER software. We derive an iterative process model for improving NER results, show an interactive NER ambiguity resolution prototype, illustrate our approach with contemporary literature, and discuss our work and future research.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Stoffel, Florian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Behrisch, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2017-07-04</dcterms:issued> <dc:creator>Behrisch, Michael</dc:creator> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:creator>Fuchs, Johannes</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39654/1/Stoffel_0-416203.pdf"/> <dcterms:title>Interactive Ambiguity Resolution of Named Entities in Fictional Literature</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39654"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-26T07:56:49Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-26T07:56:49Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39654/1/Stoffel_0-416203.pdf"/> </rdf:Description> </rdf:RDF>