Publikation:

Spectral Stability of Solitary Waves and Undercompressive Shocks

Lade...
Vorschaubild

Dateien

Hoewing_241351.pdf
Hoewing_241351.pdfGröße: 537.9 KBDownloads: 224

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This dissertation establishes spectral stability of traveling waves in two different settings. In the first part, we prove stability of solitary waves in Hamiltonian partial differential equations, notably in the generalized Korteweg-de Vries equation, the generalized Boussinesq equation, and equations which are closely related with both. Under natural and physically meaningful assumptions on the nonlinearity, we establish stability of large- and small-amplitude solitary waves in this context. In the second part, we prove spectral stability of small undercompressive shocks in viscous systems of non-strictly hyperbolic conservation laws. Here, at a point $v_\in\R^n,$ the nonlinearity $f(v)$ has the property that two of the eigenvalues of $Df(v_)$ coincide. We show that in this situation, which frequently arises in applications, the essential dynamics are governed by the dynamics of an associated two dimensional system. We finish this thesis with a careful investigation of the latter.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Solitary Waves, Undercompressive Shocks, Spectral Stability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HÖWING, Johannes, 2013. Spectral Stability of Solitary Waves and Undercompressive Shocks [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Howing2013Spect-24135,
  year={2013},
  title={Spectral Stability of Solitary Waves and Undercompressive Shocks},
  author={Höwing, Johannes},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24135">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24135/1/Hoewing_241351.pdf"/>
    <dcterms:abstract xml:lang="eng">This dissertation establishes spectral stability of traveling waves in two different settings. In the first part, we prove stability of solitary waves in Hamiltonian partial differential equations, notably in the generalized Korteweg-de Vries equation, the generalized Boussinesq equation, and equations which are closely related with both. Under natural and physically meaningful assumptions on the nonlinearity, we establish stability of large- and small-amplitude solitary waves in this context. In the second part, we prove spectral stability of small undercompressive shocks in viscous systems of non-strictly hyperbolic conservation laws. Here, at a point $v_*\in\R^n,$ the nonlinearity $f(v)$ has the property that two of the eigenvalues of $Df(v_*)$ coincide. We show that in this situation, which frequently arises in applications, the essential dynamics are governed by the dynamics of an associated two dimensional system. We finish this thesis with a careful investigation of the latter.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24135/1/Hoewing_241351.pdf"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Höwing, Johannes</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-22T06:17:38Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-22T06:17:38Z</dcterms:available>
    <dc:contributor>Höwing, Johannes</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Spectral Stability of Solitary Waves and Undercompressive Shocks</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24135"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

January 30, 2013
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen