Publikation: Spectral Stability of Solitary Waves and Undercompressive Shocks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This dissertation establishes spectral stability of traveling waves in two different settings. In the first part, we prove stability of solitary waves in Hamiltonian partial differential equations, notably in the generalized Korteweg-de Vries equation, the generalized Boussinesq equation, and equations which are closely related with both. Under natural and physically meaningful assumptions on the nonlinearity, we establish stability of large- and small-amplitude solitary waves in this context. In the second part, we prove spectral stability of small undercompressive shocks in viscous systems of non-strictly hyperbolic conservation laws. Here, at a point $v_\in\R^n,$ the nonlinearity $f(v)$ has the property that two of the eigenvalues of $Df(v_)$ coincide. We show that in this situation, which frequently arises in applications, the essential dynamics are governed by the dynamics of an associated two dimensional system. We finish this thesis with a careful investigation of the latter.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HÖWING, Johannes, 2013. Spectral Stability of Solitary Waves and Undercompressive Shocks [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Howing2013Spect-24135, year={2013}, title={Spectral Stability of Solitary Waves and Undercompressive Shocks}, author={Höwing, Johannes}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24135"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24135/1/Hoewing_241351.pdf"/> <dcterms:abstract xml:lang="eng">This dissertation establishes spectral stability of traveling waves in two different settings. In the first part, we prove stability of solitary waves in Hamiltonian partial differential equations, notably in the generalized Korteweg-de Vries equation, the generalized Boussinesq equation, and equations which are closely related with both. Under natural and physically meaningful assumptions on the nonlinearity, we establish stability of large- and small-amplitude solitary waves in this context. In the second part, we prove spectral stability of small undercompressive shocks in viscous systems of non-strictly hyperbolic conservation laws. Here, at a point $v_*\in\R^n,$ the nonlinearity $f(v)$ has the property that two of the eigenvalues of $Df(v_*)$ coincide. We show that in this situation, which frequently arises in applications, the essential dynamics are governed by the dynamics of an associated two dimensional system. We finish this thesis with a careful investigation of the latter.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24135/1/Hoewing_241351.pdf"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Höwing, Johannes</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-22T06:17:38Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-22T06:17:38Z</dcterms:available> <dc:contributor>Höwing, Johannes</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Spectral Stability of Solitary Waves and Undercompressive Shocks</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24135"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>