Publikation:

Visual pattern discovery in timed event data

Lade...
Vorschaubild

Dateien

Schaefer_193931.pdf
Schaefer_193931.pdfGröße: 417.29 KBDownloads: 934

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680K-78680K-12. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.871870

Zusammenfassung

Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IS&T/SPIE Electronic Imaging, San Francisco, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHÄFER, Matthias, Franz WANNER, Florian MANSMANN, Christian SCHEIBLE, Verity STENNETT, Anders T. HASSELROT, Daniel A. KEIM, 2011. Visual pattern discovery in timed event data. IS&T/SPIE Electronic Imaging. San Francisco, California. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680K-78680K-12. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.871870
BibTex
@inproceedings{Schafer2011-01-24Visua-19393,
  year={2011},
  doi={10.1117/12.871870},
  title={Visual pattern discovery in timed event data},
  number={7868},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2011},
  pages={78680K--78680K-12},
  editor={Wong, Pak Chung},
  author={Schäfer, Matthias and Wanner, Franz and Mansmann, Florian and Scheible, Christian and Stennett, Verity and Hasselrot, Anders T. and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19393">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Scheible, Christian</dc:contributor>
    <dcterms:bibliographicCitation>Visualization and data analysis 2011 : 24 - 25 January 2011, San Francisco, California, United States / Pak Chung Wong ... (eds.). - Bellingham, Wash. : SPIE [u.a.], 2011. - 78680K. - (Proceedings of SPIE ; 7868). - ISBN 978-0-8194-8405-5</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T06:48:18Z</dcterms:available>
    <dc:creator>Hasselrot, Anders T.</dc:creator>
    <dc:creator>Schäfer, Matthias</dc:creator>
    <dc:contributor>Hasselrot, Anders T.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19393/2/Schaefer_193931.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Stennett, Verity</dc:creator>
    <dc:creator>Wanner, Franz</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <dc:contributor>Stennett, Verity</dc:contributor>
    <dcterms:issued>2011-01-24</dcterms:issued>
    <dc:contributor>Schäfer, Matthias</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Visual pattern discovery in timed event data</dcterms:title>
    <dc:creator>Scheible, Christian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19393/2/Schaefer_193931.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19393"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.</dcterms:abstract>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T06:48:18Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen