Publikation: Visual pattern discovery in timed event data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHÄFER, Matthias, Franz WANNER, Florian MANSMANN, Christian SCHEIBLE, Verity STENNETT, Anders T. HASSELROT, Daniel A. KEIM, 2011. Visual pattern discovery in timed event data. IS&T/SPIE Electronic Imaging. San Francisco, California. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680K-78680K-12. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.871870BibTex
@inproceedings{Schafer2011-01-24Visua-19393, year={2011}, doi={10.1117/12.871870}, title={Visual pattern discovery in timed event data}, number={7868}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2011}, pages={78680K--78680K-12}, editor={Wong, Pak Chung}, author={Schäfer, Matthias and Wanner, Franz and Mansmann, Florian and Scheible, Christian and Stennett, Verity and Hasselrot, Anders T. and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19393"> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Scheible, Christian</dc:contributor> <dcterms:bibliographicCitation>Visualization and data analysis 2011 : 24 - 25 January 2011, San Francisco, California, United States / Pak Chung Wong ... (eds.). - Bellingham, Wash. : SPIE [u.a.], 2011. - 78680K. - (Proceedings of SPIE ; 7868). - ISBN 978-0-8194-8405-5</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T06:48:18Z</dcterms:available> <dc:creator>Hasselrot, Anders T.</dc:creator> <dc:creator>Schäfer, Matthias</dc:creator> <dc:contributor>Hasselrot, Anders T.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19393/2/Schaefer_193931.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Stennett, Verity</dc:creator> <dc:creator>Wanner, Franz</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Mansmann, Florian</dc:contributor> <dc:contributor>Wanner, Franz</dc:contributor> <dc:contributor>Stennett, Verity</dc:contributor> <dcterms:issued>2011-01-24</dcterms:issued> <dc:contributor>Schäfer, Matthias</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Visual pattern discovery in timed event data</dcterms:title> <dc:creator>Scheible, Christian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19393/2/Schaefer_193931.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19393"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.</dcterms:abstract> <dc:creator>Mansmann, Florian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T06:48:18Z</dc:date> </rdf:Description> </rdf:RDF>