Publikation: The length and other invariants of a real field
Lade...
Dateien
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. 2010, 269(1-2), pp. 235-252. ISSN 0025-5874. Available under: doi: 10.1007/s00209-010-0724-3
Zusammenfassung
The length of a field is the smallest integer m such that any totally positive quadratic form of dimension m represents all sums of squares. We investigate this field invariant and compare it to others such as the u-invariant, the Pythagoras number, the Hasse number, and the Mordell function related to sums of squares of linear forms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BECHER, Karim Johannes, David LEEP, 2010. The length and other invariants of a real field. In: Mathematische Zeitschrift. 2010, 269(1-2), pp. 235-252. ISSN 0025-5874. Available under: doi: 10.1007/s00209-010-0724-3BibTex
@article{Becher2010lengt-372, year={2010}, doi={10.1007/s00209-010-0724-3}, title={The length and other invariants of a real field}, number={1-2}, volume={269}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={235--252}, author={Becher, Karim Johannes and Leep, David} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/372"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The length of a field is the smallest integer m such that any totally positive quadratic form of dimension m represents all sums of squares. We investigate this field invariant and compare it to others such as the u-invariant, the Pythagoras number, the Hasse number, and the Mordell function related to sums of squares of linear forms.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/372"/> <dcterms:issued>2010</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Leep, David</dc:contributor> <dc:contributor>Becher, Karim Johannes</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-12T09:40:45Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:bibliographicCitation>Publ. in: Mathematische Zeitschrift ; 269 (2010), 1/2. - pp. 235-252</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Becher, Karim Johannes</dc:creator> <dcterms:title>The length and other invariants of a real field</dcterms:title> <dc:creator>Leep, David</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/372/1/becher.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/372/1/becher.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-12T09:40:45Z</dcterms:available> <dc:format>application/pdf</dc:format> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja