Publikation: Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The equations of motion for compressible fluids of Korteweg type as derived by Dunn and Serrin in 1985 are studied in their full generality: the Korteweg tensor is assumed to be an arbitrary function of the form $\mathcal{K} := \left( - \rho^2 \partial_{\rho} \psi + \rho \nabla \cdot ( \kappa \nabla \rho) \right) \mathcal{I} - \kappa \nabla \rho \otimes \nabla \rho, \quad \kappa := 2 \rho \partial_{\phi} \psi(\rho,\theta,\phi), \quad \phi:=|\nabla \rho|^2,$ where $\psi$ denotes Helmholtz free energy density and the capillarity $\kappa$ is subject only to the natural positivity conditions $\kappa(\rho,\theta,\phi) >0, \quad \kappa(\rho,\theta,\phi) + 2 \phi \partial_{\phi} \kappa(\rho,\theta,\phi) > 0, \quad \rho, \theta, \phi \ge 0.$ The viscous stress is supposed to be of generalized Newtonian type. The main result of the paper establishes well-posedness on domains with compact boundaries; the proof is based on refined methods of maximal regularity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOTSCHOTE, Matthias, 2012. Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type. In: SIAM Journal on Mathematical Analysis. 2012, 44(1), pp. 74-101. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/110821202BibTex
@article{Kotschote2012Dynam-25505, year={2012}, doi={10.1137/110821202}, title={Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type}, number={1}, volume={44}, issn={0036-1410}, journal={SIAM Journal on Mathematical Analysis}, pages={74--101}, author={Kotschote, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25505"> <dcterms:abstract xml:lang="eng">The equations of motion for compressible fluids of Korteweg type as derived by Dunn and Serrin in 1985 are studied in their full generality: the Korteweg tensor is assumed to be an arbitrary function of the form $\mathcal{K} := \left( - \rho^2 \partial_{\rho} \psi + \rho \nabla \cdot ( \kappa \nabla \rho) \right) \mathcal{I} - \kappa \nabla \rho \otimes \nabla \rho, \quad \kappa := 2 \rho \partial_{\phi} \psi(\rho,\theta,\phi), \quad \phi:=|\nabla \rho|^2,$ where $\psi$ denotes Helmholtz free energy density and the capillarity $\kappa$ is subject only to the natural positivity conditions $\kappa(\rho,\theta,\phi) >0, \quad \kappa(\rho,\theta,\phi) + 2 \phi \partial_{\phi} \kappa(\rho,\theta,\phi) > 0, \quad \rho, \theta, \phi \ge 0.$ The viscous stress is supposed to be of generalized Newtonian type. The main result of the paper establishes well-posedness on domains with compact boundaries; the proof is based on refined methods of maximal regularity.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25505"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kotschote, Matthias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:24:32Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:24:32Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kotschote, Matthias</dc:creator> <dcterms:title>Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>SIAM Journal on Mathematical Analysis ; 44 (2012), 1. - S. 74-101</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>