Publikation:

Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Mathematical Analysis. 2012, 44(1), pp. 74-101. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/110821202

Zusammenfassung

The equations of motion for compressible fluids of Korteweg type as derived by Dunn and Serrin in 1985 are studied in their full generality: the Korteweg tensor is assumed to be an arbitrary function of the form $\mathcal{K} := \left( - \rho^2 \partial_{\rho} \psi + \rho \nabla \cdot ( \kappa \nabla \rho) \right) \mathcal{I} - \kappa \nabla \rho \otimes \nabla \rho, \quad \kappa := 2 \rho \partial_{\phi} \psi(\rho,\theta,\phi), \quad \phi:=|\nabla \rho|^2,$ where $\psi$ denotes Helmholtz free energy density and the capillarity $\kappa$ is subject only to the natural positivity conditions $\kappa(\rho,\theta,\phi) >0, \quad \kappa(\rho,\theta,\phi) + 2 \phi \partial_{\phi} \kappa(\rho,\theta,\phi) > 0, \quad \rho, \theta, \phi \ge 0.$ The viscous stress is supposed to be of generalized Newtonian type. The main result of the paper establishes well-posedness on domains with compact boundaries; the proof is based on refined methods of maximal regularity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTSCHOTE, Matthias, 2012. Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type. In: SIAM Journal on Mathematical Analysis. 2012, 44(1), pp. 74-101. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/110821202
BibTex
@article{Kotschote2012Dynam-25505,
  year={2012},
  doi={10.1137/110821202},
  title={Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type},
  number={1},
  volume={44},
  issn={0036-1410},
  journal={SIAM Journal on Mathematical Analysis},
  pages={74--101},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25505">
    <dcterms:abstract xml:lang="eng">The equations of motion for compressible fluids of Korteweg type as derived by Dunn and Serrin in 1985 are studied in their full generality: the Korteweg tensor is assumed to be an arbitrary function of the form $\mathcal{K} := \left( - \rho^2 \partial_{\rho} \psi + \rho \nabla \cdot ( \kappa \nabla \rho) \right) \mathcal{I} - \kappa \nabla \rho \otimes \nabla \rho, \quad \kappa := 2 \rho \partial_{\phi} \psi(\rho,\theta,\phi), \quad \phi:=|\nabla \rho|^2,$ where $\psi$ denotes Helmholtz free energy density and the capillarity $\kappa$ is subject only to the natural positivity conditions $\kappa(\rho,\theta,\phi) &gt;0, \quad \kappa(\rho,\theta,\phi) + 2 \phi \partial_{\phi} \kappa(\rho,\theta,\phi) &gt; 0, \quad \rho, \theta, \phi \ge 0.$ The viscous stress is supposed to be of generalized Newtonian type. The main result of the paper establishes well-posedness on domains with compact boundaries; the proof is based on refined methods of maximal regularity.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25505"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:24:32Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:24:32Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dcterms:title>Dynamics of Compressible Non-isothermal Fluids of Non-Newtonian Korteweg Type</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>SIAM Journal on Mathematical Analysis ; 44 (2012), 1. - S. 74-101</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen