Publikation: Quantum mechanical limitations to spin diffusion in the unitary Fermi gas
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of $D_s \simeq 1.3 \hbar/m$ approaching the quantum limit of diffusion for a particle of mass $m$. Conversely, the spin drag rate reaches a maximum value of $\Gamma_\sd \simeq 1.2 k_B T_F/\hbar$ in terms of the Fermi temperature $T_F$. The frequency-dependent spin conductivity $\sigma_s(\omega)$ exhibits a broad Drude peak, with spectral weight transferred to a universal high-frequency tail $\sigma_s(\omega \to\infty) = \hbar^{1/2}C/3\pi(m\omega)^{3/2}$ proportional to the Tan contact density $C$. For the spin susceptibility $\chi_s(T)$ we find no downturn in the normal phase.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ENSS, Tilman, Rudolf HAUSSMANN, 2012. Quantum mechanical limitations to spin diffusion in the unitary Fermi gas. In: Physical Review Letters. 2012, 109(19). ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.109.195303BibTex
@article{Enss2012Quant-22025, year={2012}, doi={10.1103/PhysRevLett.109.195303}, title={Quantum mechanical limitations to spin diffusion in the unitary Fermi gas}, number={19}, volume={109}, issn={0031-9007}, journal={Physical Review Letters}, author={Enss, Tilman and Haussmann, Rudolf} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22025"> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Physical Review Letters ; 109 (2012), 19. - 195303</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Enss, Tilman</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T10:51:26Z</dcterms:available> <dcterms:title>Quantum mechanical limitations to spin diffusion in the unitary Fermi gas</dcterms:title> <dc:contributor>Haussmann, Rudolf</dc:contributor> <dc:creator>Haussmann, Rudolf</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22025"/> <dcterms:issued>2012</dcterms:issued> <dc:creator>Enss, Tilman</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T10:51:26Z</dc:date> <dcterms:abstract xml:lang="eng">We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of $D_s \simeq 1.3 \hbar/m$ approaching the quantum limit of diffusion for a particle of mass $m$. Conversely, the spin drag rate reaches a maximum value of $\Gamma_\sd \simeq 1.2 k_B T_F/\hbar$ in terms of the Fermi temperature $T_F$. The frequency-dependent spin conductivity $\sigma_s(\omega)$ exhibits a broad Drude peak, with spectral weight transferred to a universal high-frequency tail $\sigma_s(\omega \to\infty) = \hbar^{1/2}C/3\pi(m\omega)^{3/2}$ proportional to the Tan contact density $C$. For the spin susceptibility $\chi_s(T)$ we find no downturn in the normal phase.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>