Publikation: KNIME for reproducible cross-domain analysis of life science data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FILLBRUNN, Alexander, Christian DIETZ, Julianus PFEUFFER, René RAHN, Gregory A. LANDRUM, Michael R. BERTHOLD, 2017. KNIME for reproducible cross-domain analysis of life science data. In: Journal of Biotechnology. 2017, 261, pp. 149-156. ISSN 0168-1656. eISSN 1873-4863. Available under: doi: 10.1016/j.jbiotec.2017.07.028BibTex
@article{Fillbrunn2017-11-10KNIME-40975, year={2017}, doi={10.1016/j.jbiotec.2017.07.028}, title={KNIME for reproducible cross-domain analysis of life science data}, volume={261}, issn={0168-1656}, journal={Journal of Biotechnology}, pages={149--156}, author={Fillbrunn, Alexander and Dietz, Christian and Pfeuffer, Julianus and Rahn, René and Landrum, Gregory A. and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40975"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40975/1/Fillbrunn_2-1ejlobyqtrg0b3.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40975/1/Fillbrunn_2-1ejlobyqtrg0b3.pdf"/> <dcterms:title>KNIME for reproducible cross-domain analysis of life science data</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dietz, Christian</dc:creator> <dc:contributor>Fillbrunn, Alexander</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Fillbrunn, Alexander</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T07:47:56Z</dc:date> <dc:contributor>Landrum, Gregory A.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Pfeuffer, Julianus</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T07:47:56Z</dcterms:available> <dc:creator>Landrum, Gregory A.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rahn, René</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:abstract xml:lang="eng">Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40975"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:contributor>Rahn, René</dc:contributor> <dc:contributor>Dietz, Christian</dc:contributor> <dc:creator>Pfeuffer, Julianus</dc:creator> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:issued>2017-11-10</dcterms:issued> </rdf:Description> </rdf:RDF>