Publikation:

KNIME for reproducible cross-domain analysis of life science data

Lade...
Vorschaubild

Dateien

Fillbrunn_2-1ejlobyqtrg0b3.pdf
Fillbrunn_2-1ejlobyqtrg0b3.pdfGröße: 717.11 KBDownloads: 1080

Datum

2017

Autor:innen

Pfeuffer, Julianus
Rahn, René
Landrum, Gregory A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Biotechnology. 2017, 261, pp. 149-156. ISSN 0168-1656. eISSN 1873-4863. Available under: doi: 10.1016/j.jbiotec.2017.07.028

Zusammenfassung

Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FILLBRUNN, Alexander, Christian DIETZ, Julianus PFEUFFER, René RAHN, Gregory A. LANDRUM, Michael R. BERTHOLD, 2017. KNIME for reproducible cross-domain analysis of life science data. In: Journal of Biotechnology. 2017, 261, pp. 149-156. ISSN 0168-1656. eISSN 1873-4863. Available under: doi: 10.1016/j.jbiotec.2017.07.028
BibTex
@article{Fillbrunn2017-11-10KNIME-40975,
  year={2017},
  doi={10.1016/j.jbiotec.2017.07.028},
  title={KNIME for reproducible cross-domain analysis of life science data},
  volume={261},
  issn={0168-1656},
  journal={Journal of Biotechnology},
  pages={149--156},
  author={Fillbrunn, Alexander and Dietz, Christian and Pfeuffer, Julianus and Rahn, René and Landrum, Gregory A. and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40975">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40975/1/Fillbrunn_2-1ejlobyqtrg0b3.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40975/1/Fillbrunn_2-1ejlobyqtrg0b3.pdf"/>
    <dcterms:title>KNIME for reproducible cross-domain analysis of life science data</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dietz, Christian</dc:creator>
    <dc:contributor>Fillbrunn, Alexander</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fillbrunn, Alexander</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T07:47:56Z</dc:date>
    <dc:contributor>Landrum, Gregory A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Pfeuffer, Julianus</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T07:47:56Z</dcterms:available>
    <dc:creator>Landrum, Gregory A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Rahn, René</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40975"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:contributor>Rahn, René</dc:contributor>
    <dc:contributor>Dietz, Christian</dc:contributor>
    <dc:creator>Pfeuffer, Julianus</dc:creator>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:issued>2017-11-10</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen