Publikation: Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Local polynomial smoothing for the trend function and its derivatives in nonparametric regression with long-memory, short-memory and antipersistent errors is considered. We show that in the case of antipersistence, the convergence rate of a nonparametric regression estimator is faster than for uncorrelated or short-range dependent errors. Moreover, it is shown that unified asymptotic formulas for the optimal bandwidth and the MSE hold for all of the three dependence structures. Also, results on estimation at the boundary are included. A bandwidth selector for nonparametric regression with different types of dependent errors is proposed. Its asymptotic property is investigated. The practical performance of the proposal is illustrated by simulated and real data examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Yuanhua FENG, 2002. Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors. In: Annals of the Institute of Statistical Mathematics. 2002, 54(2), pp. 291-311. ISSN 0020-3157. eISSN 1572-9052. Available under: doi: 10.1023/A:1022469818068BibTex
@article{Beran2002Local-27497, year={2002}, doi={10.1023/A:1022469818068}, title={Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors}, number={2}, volume={54}, issn={0020-3157}, journal={Annals of the Institute of Statistical Mathematics}, pages={291--311}, author={Beran, Jan and Feng, Yuanhua} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27497"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27497"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-08T05:55:59Z</dcterms:available> <dc:contributor>Beran, Jan</dc:contributor> <dc:creator>Feng, Yuanhua</dc:creator> <dc:creator>Beran, Jan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-08T05:55:59Z</dc:date> <dcterms:issued>2002</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Feng, Yuanhua</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Annals of the Institute of Statistical Mathematics ; 54 (2002), 2. - S. 291-311</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Local polynomial smoothing for the trend function and its derivatives in nonparametric regression with long-memory, short-memory and antipersistent errors is considered. We show that in the case of antipersistence, the convergence rate of a nonparametric regression estimator is faster than for uncorrelated or short-range dependent errors. Moreover, it is shown that unified asymptotic formulas for the optimal bandwidth and the MSE hold for all of the three dependence structures. Also, results on estimation at the boundary are included. A bandwidth selector for nonparametric regression with different types of dependent errors is proposed. Its asymptotic property is investigated. The practical performance of the proposal is illustrated by simulated and real data examples.</dcterms:abstract> </rdf:Description> </rdf:RDF>