Run-Time and Task-Based Performance of Event Detection Techniques for Twitter
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Zusammenfassung
Twitter’s increasing popularity as a source of up to date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed or data throughput. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this paper, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. Run-Time and Task-Based Performance of Event Detection Techniques for Twitter. 27th International Conference, CAiSE 2015. Stockholm, 8. Juni 2015 - 12. Juni 2015. In: ZDRAVKOVIC, Jelena, ed. and others. Advanced Information Systems Engineering : 27th International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings. Cham: Springer, 2015, pp. 35-49. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-19068-6. Available under: doi: 10.1007/978-3-319-19069-3_3BibTex
@inproceedings{Weiler2015RunTi-31937, year={2015}, doi={10.1007/978-3-319-19069-3_3}, title={Run-Time and Task-Based Performance of Event Detection Techniques for Twitter}, number={9097}, isbn={978-3-319-19068-6}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advanced Information Systems Engineering : 27th International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings}, pages={35--49}, editor={Zdravkovic, Jelena}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31937"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-08T11:46:10Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31937"/> <dcterms:title>Run-Time and Task-Based Performance of Event Detection Techniques for Twitter</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-08T11:46:10Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31937/1/Weiler_0-300914.pdf"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:creator>Weiler, Andreas</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2015</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31937/1/Weiler_0-300914.pdf"/> <dcterms:abstract xml:lang="eng">Twitter’s increasing popularity as a source of up to date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed or data throughput. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this paper, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scholl, Marc H.</dc:creator> <dc:contributor>Scholl, Marc H.</dc:contributor> </rdf:Description> </rdf:RDF>