Publikation: Analysis of Patient Groups and Immunization Results Based on Subspace Clustering
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Biomedical experts are increasingly confronted with what is often called Big Data, an important subclass of high-dimensional data. High-dimensional data analysis can be helpful in finding relationships between records and dimensions. However, due to data complexity, experts are decreasingly capable of dealing with increasingly complex data. Mapping higher dimensional data to a smaller number of relevant dimensions is a big challenge due to the curse of dimensionality. Irrelevant, redundant, and conflicting dimensions affect the effectiveness and efficiency of analysis. Furthermore, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We show the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we analyze relationships between patients, sets of patient attributes, and outcomes of a vaccination treatment by means of a subspace clustering approach. We present an analysis workflow and discuss future directions for high-dimensional (medical) data analysis and visual exploration.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMENSCHEIN, Michael, Werner STURM, Tobias SCHRECK, Torsten ULLRICH, Daniel A. KEIM, Ljiljana MAJNARIC, Andreas HOLZINGER, 2015. Analysis of Patient Groups and Immunization Results Based on Subspace Clustering. 8th International Conference, BIH. London, 30. Aug. 2015 - 2. Sept. 2015. In: GUO, Yike, ed. and others. Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30 - September 2, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 358-368. Lecture Notes in Computer Science / Lecture notes in artificial intelligence. 9250. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-23343-7. Available under: doi: 10.1007/978-3-319-23344-4_35BibTex
@inproceedings{Blumenschein2015Analy-32002, year={2015}, doi={10.1007/978-3-319-23344-4_35}, title={Analysis of Patient Groups and Immunization Results Based on Subspace Clustering}, number={9250}, isbn={978-3-319-23343-7}, issn={0302-9743}, publisher={Springer}, address={Cham [u.a.]}, series={Lecture Notes in Computer Science / Lecture notes in artificial intelligence}, booktitle={Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30 - September 2, 2015; Proceedings}, pages={358--368}, editor={Guo, Yike}, author={Blumenschein, Michael and Sturm, Werner and Schreck, Tobias and Ullrich, Torsten and Keim, Daniel A. and Majnaric, Ljiljana and Holzinger, Andreas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32002"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32002/1/Hund_0-301051.pdf"/> <dc:creator>Majnaric, Ljiljana</dc:creator> <dc:creator>Blumenschein, Michael</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32002"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32002/1/Hund_0-301051.pdf"/> <dcterms:issued>2015</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Sturm, Werner</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-28T09:48:01Z</dc:date> <dc:contributor>Schreck, Tobias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Sturm, Werner</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Analysis of Patient Groups and Immunization Results Based on Subspace Clustering</dcterms:title> <dc:contributor>Ullrich, Torsten</dc:contributor> <dc:creator>Ullrich, Torsten</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-28T09:48:01Z</dcterms:available> <dc:contributor>Majnaric, Ljiljana</dc:contributor> <dc:contributor>Holzinger, Andreas</dc:contributor> <dcterms:abstract xml:lang="eng">Biomedical experts are increasingly confronted with what is often called Big Data, an important subclass of high-dimensional data. High-dimensional data analysis can be helpful in finding relationships between records and dimensions. However, due to data complexity, experts are decreasingly capable of dealing with increasingly complex data. Mapping higher dimensional data to a smaller number of relevant dimensions is a big challenge due to the curse of dimensionality. Irrelevant, redundant, and conflicting dimensions affect the effectiveness and efficiency of analysis. Furthermore, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We show the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we analyze relationships between patients, sets of patient attributes, and outcomes of a vaccination treatment by means of a subspace clustering approach. We present an analysis workflow and discuss future directions for high-dimensional (medical) data analysis and visual exploration.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:creator>Holzinger, Andreas</dc:creator> <dc:contributor>Blumenschein, Michael</dc:contributor> </rdf:Description> </rdf:RDF>