Publikation:

Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Bortolussi, Luca
Cairoli, Francesca

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JANSEN, Nils, ed., Mirco TRIBASTONE, ed.. Quantitative Evaluation of Systems : 20th International Conference, QEST 2023, Antwerp, Belgium, September 20–22, 2023, Proceedings. Cham: Springer, 2023, pp. 143-147. Lecture Notes in Computer Science (LNCS). 14287. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-43834-9. Available under: doi: 10.1007/978-3-031-43835-6_10

Zusammenfassung

We propose a data-driven machine learning framework that automatically infers an explicit representation of a Chemical Reaction Network (CRN) together with its dynamics. The contribution is twofold: on one hand, our technique can be used to alleviate the computational burden of simulating a complex, multi-scale stochastic system; on the other hand, it can be used to extract an interpretable model from data.

Our methodology is inspired by Neural Relational Inference and implements a graph-based Variational Autoencoder with the following structure: the encoder maps the observed trajectories into a representation of the CRN structure as a bipartite graph, and the decoder infers the respective reaction rates. Finally, the first two moments of the stochastic dynamics are computed with the standard linear noise approximation algorithm. Our current implementation demonstrates the applicability of the framework to single-reaction systems. Extending the framework towards inferring more complex CRN in a fully automated and data-driven manner involves implementation challenges related to neural network architecture and hyperparameter search, and is a work in progress.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

20th International Conference, QEST 2023, 20. Sept. 2023 - 22. Sept. 2023, Antwerp, Belgium
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORTOLUSSI, Luca, Francesca CAIROLI, Julia KLEIN, Tatjana PETROV, 2023. Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders. 20th International Conference, QEST 2023. Antwerp, Belgium, 20. Sept. 2023 - 22. Sept. 2023. In: JANSEN, Nils, ed., Mirco TRIBASTONE, ed.. Quantitative Evaluation of Systems : 20th International Conference, QEST 2023, Antwerp, Belgium, September 20–22, 2023, Proceedings. Cham: Springer, 2023, pp. 143-147. Lecture Notes in Computer Science (LNCS). 14287. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-43834-9. Available under: doi: 10.1007/978-3-031-43835-6_10
BibTex
@inproceedings{Bortolussi2023DataD-68587,
  year={2023},
  doi={10.1007/978-3-031-43835-6_10},
  title={Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders},
  number={14287},
  isbn={978-3-031-43834-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science (LNCS)},
  booktitle={Quantitative Evaluation of Systems : 20th International Conference, QEST 2023, Antwerp, Belgium, September 20–22, 2023, Proceedings},
  pages={143--147},
  editor={Jansen, Nils and Tribastone, Mirco},
  author={Bortolussi, Luca and Cairoli, Francesca and Klein, Julia and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68587">
    <dc:creator>Klein, Julia</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Cairoli, Francesca</dc:contributor>
    <dc:creator>Cairoli, Francesca</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Klein, Julia</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-05T12:28:40Z</dc:date>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68587"/>
    <dc:language>eng</dc:language>
    <dc:creator>Bortolussi, Luca</dc:creator>
    <dcterms:abstract>We propose a data-driven machine learning framework that automatically infers an explicit representation of a Chemical Reaction Network (CRN) together with its dynamics. The contribution is twofold: on one hand, our technique can be used to alleviate the computational burden of simulating a complex, multi-scale stochastic system; on the other hand, it can be used to extract an interpretable model from data.

Our methodology is inspired by Neural Relational Inference and implements a graph-based Variational Autoencoder with the following structure: the encoder maps the observed trajectories into a representation of the CRN structure as a bipartite graph, and the decoder infers the respective reaction rates. Finally, the first two moments of the stochastic dynamics are computed with the standard linear noise approximation algorithm. Our current implementation demonstrates the applicability of the framework to single-reaction systems. Extending the framework towards inferring more complex CRN in a fully automated and data-driven manner involves implementation challenges related to neural network architecture and hyperparameter search, and is a work in progress.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders</dcterms:title>
    <dc:contributor>Bortolussi, Luca</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-05T12:28:40Z</dcterms:available>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen