Publikation: Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a data-driven machine learning framework that automatically infers an explicit representation of a Chemical Reaction Network (CRN) together with its dynamics. The contribution is twofold: on one hand, our technique can be used to alleviate the computational burden of simulating a complex, multi-scale stochastic system; on the other hand, it can be used to extract an interpretable model from data.
Our methodology is inspired by Neural Relational Inference and implements a graph-based Variational Autoencoder with the following structure: the encoder maps the observed trajectories into a representation of the CRN structure as a bipartite graph, and the decoder infers the respective reaction rates. Finally, the first two moments of the stochastic dynamics are computed with the standard linear noise approximation algorithm. Our current implementation demonstrates the applicability of the framework to single-reaction systems. Extending the framework towards inferring more complex CRN in a fully automated and data-driven manner involves implementation challenges related to neural network architecture and hyperparameter search, and is a work in progress.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BORTOLUSSI, Luca, Francesca CAIROLI, Julia KLEIN, Tatjana PETROV, 2023. Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders. 20th International Conference, QEST 2023. Antwerp, Belgium, 20. Sept. 2023 - 22. Sept. 2023. In: JANSEN, Nils, ed., Mirco TRIBASTONE, ed.. Quantitative Evaluation of Systems : 20th International Conference, QEST 2023, Antwerp, Belgium, September 20–22, 2023, Proceedings. Cham: Springer, 2023, pp. 143-147. Lecture Notes in Computer Science (LNCS). 14287. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-43834-9. Available under: doi: 10.1007/978-3-031-43835-6_10BibTex
@inproceedings{Bortolussi2023DataD-68587, year={2023}, doi={10.1007/978-3-031-43835-6_10}, title={Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders}, number={14287}, isbn={978-3-031-43834-9}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science (LNCS)}, booktitle={Quantitative Evaluation of Systems : 20th International Conference, QEST 2023, Antwerp, Belgium, September 20–22, 2023, Proceedings}, pages={143--147}, editor={Jansen, Nils and Tribastone, Mirco}, author={Bortolussi, Luca and Cairoli, Francesca and Klein, Julia and Petrov, Tatjana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68587"> <dc:creator>Klein, Julia</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cairoli, Francesca</dc:contributor> <dc:creator>Cairoli, Francesca</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Klein, Julia</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-05T12:28:40Z</dc:date> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68587"/> <dc:language>eng</dc:language> <dc:creator>Bortolussi, Luca</dc:creator> <dcterms:abstract>We propose a data-driven machine learning framework that automatically infers an explicit representation of a Chemical Reaction Network (CRN) together with its dynamics. The contribution is twofold: on one hand, our technique can be used to alleviate the computational burden of simulating a complex, multi-scale stochastic system; on the other hand, it can be used to extract an interpretable model from data. Our methodology is inspired by Neural Relational Inference and implements a graph-based Variational Autoencoder with the following structure: the encoder maps the observed trajectories into a representation of the CRN structure as a bipartite graph, and the decoder infers the respective reaction rates. Finally, the first two moments of the stochastic dynamics are computed with the standard linear noise approximation algorithm. Our current implementation demonstrates the applicability of the framework to single-reaction systems. Extending the framework towards inferring more complex CRN in a fully automated and data-driven manner involves implementation challenges related to neural network architecture and hyperparameter search, and is a work in progress.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Data-Driven Inference of Chemical Reaction Networks via Graph-Based Variational Autoencoders</dcterms:title> <dc:contributor>Bortolussi, Luca</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-05T12:28:40Z</dcterms:available> <dc:creator>Petrov, Tatjana</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>