Publikation: Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multi-atlas segmentation techniques typically comprise generation of multiple candidate labels that are then combined at a final label fusion stage. Label fusion strategies usually leverage information contained in these training labels but ignore local neuroanatomical information. Here, we address this limitation by explicitly incorporating local information at the label fusion stage. The proposed method - Autocorrecting Walks over Localized Markov Random Fields (AWoL-MRF) - is initialized using a set of candidate labels from the atlas library to partition a specific structure into high and low confidence regions. The labels of the low confidence regions are updated based on a localized Markov random field model and a novel sequential inference process (walks), which mimics manual segmentation protocols. The approach combines a priori information from the atlas library with the local spatial constraints improving the accuracy and robustness of the existing segmentation methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BHAGWAT, Nikhil, Jonathan PIPITONE, Aristotle N. VOINESKOS, Jens C. PRUESSNER, M. Mallar CHAKRAVARTY, 2015. Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). Brooklyn, NY, USA, 16. Apr. 2015 - 19. Apr. 2015. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI). Piscataway, NJ: IEEE, 2015, pp. 617-620. ISBN 978-1-4799-2374-8. Available under: doi: 10.1109/ISBI.2015.7163949BibTex
@inproceedings{Bhagwat2015-04Impro-38628, year={2015}, doi={10.1109/ISBI.2015.7163949}, title={Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion}, isbn={978-1-4799-2374-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={IEEE 12th International Symposium on Biomedical Imaging (ISBI)}, pages={617--620}, author={Bhagwat, Nikhil and Pipitone, Jonathan and Voineskos, Aristotle N. and Pruessner, Jens C. and Chakravarty, M. Mallar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38628"> <dc:contributor>Voineskos, Aristotle N.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38628"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Multi-atlas segmentation techniques typically comprise generation of multiple candidate labels that are then combined at a final label fusion stage. Label fusion strategies usually leverage information contained in these training labels but ignore local neuroanatomical information. Here, we address this limitation by explicitly incorporating local information at the label fusion stage. The proposed method - Autocorrecting Walks over Localized Markov Random Fields (AWoL-MRF) - is initialized using a set of candidate labels from the atlas library to partition a specific structure into high and low confidence regions. The labels of the low confidence regions are updated based on a localized Markov random field model and a novel sequential inference process (walks), which mimics manual segmentation protocols. The approach combines a priori information from the atlas library with the local spatial constraints improving the accuracy and robustness of the existing segmentation methods.</dcterms:abstract> <dc:contributor>Pruessner, Jens C.</dc:contributor> <dc:creator>Voineskos, Aristotle N.</dc:creator> <dcterms:title>Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-27T07:16:00Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-27T07:16:00Z</dcterms:available> <dcterms:issued>2015-04</dcterms:issued> <dc:contributor>Pipitone, Jonathan</dc:contributor> <dc:creator>Pruessner, Jens C.</dc:creator> <dc:contributor>Bhagwat, Nikhil</dc:contributor> <dc:creator>Bhagwat, Nikhil</dc:creator> <dc:contributor>Chakravarty, M. Mallar</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Pipitone, Jonathan</dc:creator> <dc:language>eng</dc:language> <dc:creator>Chakravarty, M. Mallar</dc:creator> </rdf:Description> </rdf:RDF>