Publikation:

Visual Bias Detection for Addressing Illegal Fishing Activities

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2024 IEEE Visual Analytics Science and Technology VAST Challenge. Piscataway, NJ: IEEE, 2024, S. 9-10. ISBN 979-8-3315-1727-4. Verfügbar unter: doi: 10.1109/vastchallenge64683.2024.00009

Zusammenfassung

In this work, we present a visual analytics approach designed to address the 2024 VAST Challenge Mini-Challenge 1, which focuses on detecting bias in a knowledge graph. Our solution utilizes pixel-based visualizations to explore patterns within the knowledge graph, CatchNet, which is employed to identify potential illegal fishing activities. CatchNet is constructed by FishEye analysts who aggregate open-source data, including news articles and public reports. They have recently begun incorporating knowledge extracted from these sources using advanced language models. Our method combines pixel-based visualizations with ordering techniques and sentiment analysis to uncover hidden patterns in both the news articles and the knowledge graph. Notably, our analysis reveals that news articles covering critiques and convictions of companies are subject to elevated levels of bias.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2024 IEEE Visual Analytics Science and Technology VAST Challenge, 13. Okt. 2024, St. Pete Beach, FL
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUCHMÜLLER, Raphael, Daniel FÜRST, Alexander FRINGS, Udo SCHLEGEL, Daniel A. KEIM, 2024. Visual Bias Detection for Addressing Illegal Fishing Activities. 2024 IEEE Visual Analytics Science and Technology VAST Challenge. St. Pete Beach, FL, 13. Okt. 2024. In: 2024 IEEE Visual Analytics Science and Technology VAST Challenge. Piscataway, NJ: IEEE, 2024, S. 9-10. ISBN 979-8-3315-1727-4. Verfügbar unter: doi: 10.1109/vastchallenge64683.2024.00009
BibTex
@inproceedings{Buchmuller2024-10-13Visua-71395,
  year={2024},
  doi={10.1109/vastchallenge64683.2024.00009},
  title={Visual Bias Detection for Addressing Illegal Fishing Activities},
  isbn={979-8-3315-1727-4},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2024 IEEE Visual Analytics Science and Technology VAST Challenge},
  pages={9--10},
  author={Buchmüller, Raphael and Fürst, Daniel and Frings, Alexander and Schlegel, Udo and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71395">
    <dc:contributor>Buchmüller, Raphael</dc:contributor>
    <dc:creator>Buchmüller, Raphael</dc:creator>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fürst, Daniel</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:18:58Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:18:58Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Frings, Alexander</dc:contributor>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:contributor>Fürst, Daniel</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71395"/>
    <dcterms:issued>2024-10-13</dcterms:issued>
    <dcterms:title>Visual Bias Detection for Addressing Illegal Fishing Activities</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Frings, Alexander</dc:creator>
    <dcterms:abstract>In this work, we present a visual analytics approach designed to address the 2024 VAST Challenge Mini-Challenge 1, which focuses on detecting bias in a knowledge graph. Our solution utilizes pixel-based visualizations to explore patterns within the knowledge graph, CatchNet, which is employed to identify potential illegal fishing activities. CatchNet is constructed by FishEye analysts who aggregate open-source data, including news articles and public reports. They have recently begun incorporating knowledge extracted from these sources using advanced language models. Our method combines pixel-based visualizations with ordering techniques and sentiment analysis to uncover hidden patterns in both the news articles and the knowledge graph. Notably, our analysis reveals that news articles covering critiques and convictions of companies are subject to elevated levels of bias.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen