Publikation: Visual Bias Detection for Addressing Illegal Fishing Activities
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we present a visual analytics approach designed to address the 2024 VAST Challenge Mini-Challenge 1, which focuses on detecting bias in a knowledge graph. Our solution utilizes pixel-based visualizations to explore patterns within the knowledge graph, CatchNet, which is employed to identify potential illegal fishing activities. CatchNet is constructed by FishEye analysts who aggregate open-source data, including news articles and public reports. They have recently begun incorporating knowledge extracted from these sources using advanced language models. Our method combines pixel-based visualizations with ordering techniques and sentiment analysis to uncover hidden patterns in both the news articles and the knowledge graph. Notably, our analysis reveals that news articles covering critiques and convictions of companies are subject to elevated levels of bias.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUCHMÜLLER, Raphael, Daniel FÜRST, Alexander FRINGS, Udo SCHLEGEL, Daniel A. KEIM, 2024. Visual Bias Detection for Addressing Illegal Fishing Activities. 2024 IEEE Visual Analytics Science and Technology VAST Challenge. St. Pete Beach, FL, 13. Okt. 2024. In: 2024 IEEE Visual Analytics Science and Technology VAST Challenge. Piscataway, NJ: IEEE, 2024, S. 9-10. ISBN 979-8-3315-1727-4. Verfügbar unter: doi: 10.1109/vastchallenge64683.2024.00009BibTex
@inproceedings{Buchmuller2024-10-13Visua-71395, year={2024}, doi={10.1109/vastchallenge64683.2024.00009}, title={Visual Bias Detection for Addressing Illegal Fishing Activities}, isbn={979-8-3315-1727-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2024 IEEE Visual Analytics Science and Technology VAST Challenge}, pages={9--10}, author={Buchmüller, Raphael and Fürst, Daniel and Frings, Alexander and Schlegel, Udo and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71395"> <dc:contributor>Buchmüller, Raphael</dc:contributor> <dc:creator>Buchmüller, Raphael</dc:creator> <dc:contributor>Schlegel, Udo</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fürst, Daniel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:18:58Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:18:58Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Frings, Alexander</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Fürst, Daniel</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71395"/> <dcterms:issued>2024-10-13</dcterms:issued> <dcterms:title>Visual Bias Detection for Addressing Illegal Fishing Activities</dcterms:title> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Frings, Alexander</dc:creator> <dcterms:abstract>In this work, we present a visual analytics approach designed to address the 2024 VAST Challenge Mini-Challenge 1, which focuses on detecting bias in a knowledge graph. Our solution utilizes pixel-based visualizations to explore patterns within the knowledge graph, CatchNet, which is employed to identify potential illegal fishing activities. CatchNet is constructed by FishEye analysts who aggregate open-source data, including news articles and public reports. They have recently begun incorporating knowledge extracted from these sources using advanced language models. Our method combines pixel-based visualizations with ordering techniques and sentiment analysis to uncover hidden patterns in both the news articles and the knowledge graph. Notably, our analysis reveals that news articles covering critiques and convictions of companies are subject to elevated levels of bias.</dcterms:abstract> </rdf:Description> </rdf:RDF>