Publikation: How to Accurately Determine the Position on a Known Course in Road Cycling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With modern cycling computers it is possible to provide cyclists with complex feedback during rides. If the feedback is course-dependent, it is necessary to know the riders current position on the course. Different approaches to estimate the position on the course from common GPS and speed sensors were compared: the direct distance measure derived from the number of rotations of the wheel, GPS coordinates projected onto the course trajectory, and a Kalman filter incorporating speed as well as GPS measurements. To quantify the accuracy of the different methods, an experiment was conducted on a race track where a fixed point on the course was tagged during the ride. The Kalman filter approach was able to overcome certain shortcomings of the other two approaches and achieved a mean error of −0.13m and a root mean square error of 0.97m.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WOLF, Stefan, Martin DOBIASCH, Alexander ARTIGA GONZALEZ, Dietmar SAUPE, 2018. How to Accurately Determine the Position on a Known Course in Road Cycling. 11th International Symposium of Computer Science in Sports (IACSS 2017). Konstanz, 6. Sept. 2017 - 9. Sept. 2017. In: LAMES, Martin, ed., Dietmar SAUPE, ed., Josef WIEMEYER, ed.. Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017). Cham: Springer, 2018, pp. 103-109. Advances in Intelligent Systems and Computing. 663. ISSN 2194-5357. eISSN 2194-5365. ISBN 978-3-319-67845-0. Available under: doi: 10.1007/978-3-319-67846-7_11BibTex
@inproceedings{Wolf2018Accur-41237, year={2018}, doi={10.1007/978-3-319-67846-7_11}, title={How to Accurately Determine the Position on a Known Course in Road Cycling}, number={663}, isbn={978-3-319-67845-0}, issn={2194-5357}, publisher={Springer}, address={Cham}, series={Advances in Intelligent Systems and Computing}, booktitle={Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017)}, pages={103--109}, editor={Lames, Martin and Saupe, Dietmar and Wiemeyer, Josef}, author={Wolf, Stefan and Dobiasch, Martin and Artiga Gonzalez, Alexander and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41237"> <dc:creator>Wolf, Stefan</dc:creator> <dcterms:issued>2018</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wolf, Stefan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41237"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>How to Accurately Determine the Position on a Known Course in Road Cycling</dcterms:title> <dc:creator>Artiga Gonzalez, Alexander</dc:creator> <dc:contributor>Artiga Gonzalez, Alexander</dc:contributor> <dcterms:abstract xml:lang="eng">With modern cycling computers it is possible to provide cyclists with complex feedback during rides. If the feedback is course-dependent, it is necessary to know the riders current position on the course. Different approaches to estimate the position on the course from common GPS and speed sensors were compared: the direct distance measure derived from the number of rotations of the wheel, GPS coordinates projected onto the course trajectory, and a Kalman filter incorporating speed as well as GPS measurements. To quantify the accuracy of the different methods, an experiment was conducted on a race track where a fixed point on the course was tagged during the ride. The Kalman filter approach was able to overcome certain shortcomings of the other two approaches and achieved a mean error of −0.13m and a root mean square error of 0.97m.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:17:29Z</dc:date> <dc:creator>Dobiasch, Martin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:17:29Z</dcterms:available> <dc:contributor>Dobiasch, Martin</dc:contributor> </rdf:Description> </rdf:RDF>