Publikation: Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the Cauchy problem in Rn for some fully nonlinear thermoelastic Kirchhoff type plate equations where heat conduction is modeled by either the Cattaneo law or by the Fourier law. Additionally, we take into account possible inertial effects. Considering nonlinearities which are of fourth-order in the space variable, we deal with a fully nonlinear system which triggers difficulties typical for nonlinear Schrödinger equations. The different models considered are systems of mixed type comparable to Schrödinger-parabolic or Schrödinger-hyperbolic systems. The main task consists in proving sophisticated a priori estimates with the achievement of obtaining the global existence of solutions for small data, neither known nor expected for the Cauchy problem in pure plate theory nor available before for the coupled system under investigation, where only special cases (bounded domains with analytic semigroup setting, or the Cauchy problem with semilinear nonlinearities) had been treated before.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RACKE, Reinhard, Yoshihiro UEDA, 2017. Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problemBibTex
@techreport{Racke2017Nonli-38477, year={2017}, series={Konstanzer Schriften in Mathematik}, title={Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem}, number={360}, author={Racke, Reinhard and Ueda, Yoshihiro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38477"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38477/5/Racke_0-403312.pdf"/> <dcterms:title>Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem</dcterms:title> <dc:contributor>Ueda, Yoshihiro</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T15:01:52Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We consider the Cauchy problem in R<sup>n</sup> for some fully nonlinear thermoelastic Kirchhoff type plate equations where heat conduction is modeled by either the Cattaneo law or by the Fourier law. Additionally, we take into account possible inertial effects. Considering nonlinearities which are of fourth-order in the space variable, we deal with a fully nonlinear system which triggers difficulties typical for nonlinear Schrödinger equations. The different models considered are systems of mixed type comparable to Schrödinger-parabolic or Schrödinger-hyperbolic systems. The main task consists in proving sophisticated a priori estimates with the achievement of obtaining the global existence of solutions for small data, neither known nor expected for the Cauchy problem in pure plate theory nor available before for the coupled system under investigation, where only special cases (bounded domains with analytic semigroup setting, or the Cauchy problem with semilinear nonlinearities) had been treated before.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Racke, Reinhard</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38477"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38477/5/Racke_0-403312.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ueda, Yoshihiro</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T15:01:52Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Racke, Reinhard</dc:contributor> </rdf:Description> </rdf:RDF>