Publikation:

Methods for Multivariate Time-Series Classification on Brain Data : Aggregation, Stratification and Neural Network Models

Lade...
Vorschaubild

Dateien

Doell_2-1dhjtzl2q3lt61.pdf
Doell_2-1dhjtzl2q3lt61.pdfGröße: 47.34 MBDownloads: 138

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis is about the analysis of two data sets consisting of human brain data measured by electroencephalography (EEG). One data set contains data from craving smokers, who have not smoked for several hours, non-craving smokers, who had a smoke shortly before the measurement and non-smokers. These classes are to be distinguished with the help of neural networks. The second data set contains noisy EEG signals with different kinds of noise from and clean signal that are to be distinguished. In order to analyze them, I adapt a network structure, that was originally developed for neural networks for object recognition in images. I modify, the so called residual blocks in order to use them on EEG time series. One difficulty of EEG data is their property of being individual-specific. This can sometimes even be helpful to get improved predictions: if the classes of the data change so infrequently that it can be assumed that several parts (so called snippets) of a longer signal belong to the same class, then this information can be used to make predictions of several snippets and aggregate them to create a classification of the longer original signal.
I investigate a total of 15 research questions, regarding the context in neuroscience, adaptations and improvements of neural network models, and the optimal choice of aggregation functions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Addiction, Smoking, EEG, Machine Learning, Aggregation, Neural Networks

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOELL, Christoph, 2021. Methods for Multivariate Time-Series Classification on Brain Data : Aggregation, Stratification and Neural Network Models [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Doell2021Metho-53422,
  year={2021},
  title={Methods for Multivariate Time-Series Classification on Brain Data : Aggregation, Stratification and Neural Network Models},
  author={Doell, Christoph},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53422">
    <dc:creator>Doell, Christoph</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53422"/>
    <dcterms:title>Methods for Multivariate Time-Series Classification on Brain Data : Aggregation, Stratification and Neural Network Models</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-21T06:20:39Z</dc:date>
    <dcterms:abstract xml:lang="eng">This thesis is about the analysis of two data sets consisting of human brain data measured by electroencephalography (EEG). One data set contains data from craving smokers, who have not smoked for several hours, non-craving smokers, who had a smoke shortly before the measurement and non-smokers. These classes are to be distinguished with the help of neural networks. The second data set contains noisy EEG signals with different kinds of noise from and clean signal that are to be distinguished. In order to analyze them, I adapt a network structure, that was originally developed for neural networks for object recognition in images. I modify, the so called residual blocks in order to use them on EEG time series. One difficulty of EEG data is their property of being individual-specific. This can sometimes even be helpful to get improved predictions: if the classes of the data change so infrequently that it can be assumed that several parts (so called snippets) of a longer signal belong to the same class, then this information can be used to make predictions of several snippets and aggregate them to create a classification of the longer original signal.&lt;br /&gt;I investigate a total of 15 research questions, regarding the context in neuroscience, adaptations and improvements of neural network models, and the optimal choice of aggregation functions.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53422/3/Doell_2-1dhjtzl2q3lt61.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-21T06:20:39Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Doell, Christoph</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53422/3/Doell_2-1dhjtzl2q3lt61.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

March 8, 2021
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2021
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen