Publikation:

Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Nanostrukturlabor, Partikelanalysezentrum

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nanoscale. Royal Society of Chemistry (RSC). 2020, 12(35), S. 18322-18332. ISSN 2040-3364. eISSN 2040-3372. Verfügbar unter: doi: 10.1039/d0nr03734f

Zusammenfassung

Resistive switching devices offer a great potential for advanced computing and data storage, including neuromorphic networks and random-access memory. State-of-the-art memristors are mostly realized by a three-layer structure, which is comprised of an active metal oxide layer sandwiched between two metal electrodes. Thus, there is always an interface involving two materials differing strongly in crystallographic and electronic properties. In this study, we present a resistive switching nanorod device based on a metal oxide sandwiched between two transparent conductive oxide electrodes. Thus, the system is characterized by a different, smooth interface offering new possibilities for increased energy efficiency and transparent electronics. Antimony-doped tin oxide (ATO) is used as an electrode material. The heavily doped ATO nanorods, exhibiting a good conductivity, are produced by a templated electrochemical deposition approach of alloy particles with subsequent thermal oxidation. The process enables precise control of the doping level within the nanorods and the formation of a doping level gradient. Electrical characterization reveals that a stronger gradient between heavily doped and undoped tin oxide within the nanorods results in a more rectifying character of the junction. Three-domain nanorods consisting of an undoped tin oxide segment in between two ATO segments are utilized to introduce memristive properties into the nanorod device. The resistive switching of these nanorods can be attributed to an oxygen vacancy doping gradient introduced during thermal oxidation. These vacancies are mobile within the tin oxide host structure and their injection from the ATO segment into the undoped tin oxide segment results in altered conductivity of the device, when an external bias is applied.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HERZOG, Thomas, Naomi WEITZEL, Sebastian POLARZ, 2020. Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods. In: Nanoscale. Royal Society of Chemistry (RSC). 2020, 12(35), S. 18322-18332. ISSN 2040-3364. eISSN 2040-3372. Verfügbar unter: doi: 10.1039/d0nr03734f
BibTex
@article{Herzog2020-09-17Oxyge-51342,
  year={2020},
  doi={10.1039/d0nr03734f},
  title={Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods},
  number={35},
  volume={12},
  issn={2040-3364},
  journal={Nanoscale},
  pages={18322--18332},
  author={Herzog, Thomas and Weitzel, Naomi and Polarz, Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51342">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51342"/>
    <dcterms:abstract xml:lang="eng">Resistive switching devices offer a great potential for advanced computing and data storage, including neuromorphic networks and random-access memory. State-of-the-art memristors are mostly realized by a three-layer structure, which is comprised of an active metal oxide layer sandwiched between two metal electrodes. Thus, there is always an interface involving two materials differing strongly in crystallographic and electronic properties. In this study, we present a resistive switching nanorod device based on a metal oxide sandwiched between two transparent conductive oxide electrodes. Thus, the system is characterized by a different, smooth interface offering new possibilities for increased energy efficiency and transparent electronics. Antimony-doped tin oxide (ATO) is used as an electrode material. The heavily doped ATO nanorods, exhibiting a good conductivity, are produced by a templated electrochemical deposition approach of alloy particles with subsequent thermal oxidation. The process enables precise control of the doping level within the nanorods and the formation of a doping level gradient. Electrical characterization reveals that a stronger gradient between heavily doped and undoped tin oxide within the nanorods results in a more rectifying character of the junction. Three-domain nanorods consisting of an undoped tin oxide segment in between two ATO segments are utilized to introduce memristive properties into the nanorod device. The resistive switching of these nanorods can be attributed to an oxygen vacancy doping gradient introduced during thermal oxidation. These vacancies are mobile within the tin oxide host structure and their injection from the ATO segment into the undoped tin oxide segment results in altered conductivity of the device, when an external bias is applied.</dcterms:abstract>
    <dc:contributor>Polarz, Sebastian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Herzog, Thomas</dc:creator>
    <dc:contributor>Herzog, Thomas</dc:contributor>
    <dc:creator>Weitzel, Naomi</dc:creator>
    <dc:creator>Polarz, Sebastian</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-14T06:53:43Z</dcterms:available>
    <dcterms:issued>2020-09-17</dcterms:issued>
    <dc:contributor>Weitzel, Naomi</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-14T06:53:43Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen