Publikation: Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHREIBER, Andreas, Matthias C. HUBER, Helmut CÖLFEN, Stefan M. SCHILLER, 2015. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. In: Nature Communications. 2015, 6, 6705. eISSN 2041-1723. Available under: doi: 10.1038/ncomms7705BibTex
@article{Schreiber2015Molec-30957, year={2015}, doi={10.1038/ncomms7705}, title={Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures}, volume={6}, journal={Nature Communications}, author={Schreiber, Andreas and Huber, Matthias C. and Cölfen, Helmut and Schiller, Stefan M.}, note={Article Number: 6705} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30957"> <dcterms:title>Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T07:21:46Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2015</dcterms:issued> <dc:creator>Cölfen, Helmut</dc:creator> <dc:creator>Schiller, Stefan M.</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30957"/> <dc:contributor>Schiller, Stefan M.</dc:contributor> <dc:contributor>Schreiber, Andreas</dc:contributor> <dc:creator>Huber, Matthias C.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Huber, Matthias C.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T07:21:46Z</dc:date> <dcterms:abstract xml:lang="eng">The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30957/1/Schreiber_0-289806.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30957/1/Schreiber_0-289806.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Schreiber, Andreas</dc:creator> </rdf:Description> </rdf:RDF>