Publikation: Data-Informed Parameter Synthesis for Population Markov Chains
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Stochastic population models are widely used to model phenomena in different areas such as chemical kinetics or collective animal behaviour. Quantitative analysis of stochastic population models easily becomes challenging, due to the combinatorial propagation of dependencies across the population. The complexity becomes especially prominent when model’s parameters are not known and available measurements are limited. In this paper, we illustrate this challenge in a concrete scenario: we assume a simple communication scheme among identical individuals, inspired by how social honeybees emit the alarm pheromone to protect the colony in case of danger. Together, n individuals induce a population Markov chain with n parameters. In addition, we assume to be able to experimentally observe the states only after the steady-state is reached. In order to obtain the parameters of the individual’s behaviour, by utilising the data measurements for population, we combine two existing techniques. First, we use the tools for parameter synthesis for Markov chains with respect to temporal logic properties, and then we employ CEGAR-like reasoning to find the viable parameter space up to desired coverage. We report the performance on a number of synthetic data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAJNAL, Matej, Morgane NOUVIAN, David SAFRANEK, Tatjana PETROV, 2019. Data-Informed Parameter Synthesis for Population Markov Chains. 6th International Workshop, Hybrid Systems Biology (HSB) 2019. Prague, Czech Republic, 6. Apr. 2019 - 7. Apr. 2019. In: ČEŠKA, Milan, ed., Nicola PAOLETTI, ed.. Hybrid Systems Biology : 6th International Workshop, HSB 2019, Prague, Czech Republic, April 6-7, 2019, Revised Selected Papers. Cham: Springer, 2019, pp. 147-164. Lecture Notes in Bioinformatics. 11705. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-28041-3. Available under: doi: 10.1007/978-3-030-28042-0_10BibTex
@inproceedings{Hajnal2019-08-01DataI-48772, year={2019}, doi={10.1007/978-3-030-28042-0_10}, title={Data-Informed Parameter Synthesis for Population Markov Chains}, number={11705}, isbn={978-3-030-28041-3}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Bioinformatics}, booktitle={Hybrid Systems Biology : 6th International Workshop, HSB 2019, Prague, Czech Republic, April 6-7, 2019, Revised Selected Papers}, pages={147--164}, editor={Češka, Milan and Paoletti, Nicola}, author={Hajnal, Matej and Nouvian, Morgane and Safranek, David and Petrov, Tatjana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48772"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Nouvian, Morgane</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-25T10:36:11Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Petrov, Tatjana</dc:creator> <dc:contributor>Hajnal, Matej</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Stochastic population models are widely used to model phenomena in different areas such as chemical kinetics or collective animal behaviour. Quantitative analysis of stochastic population models easily becomes challenging, due to the combinatorial propagation of dependencies across the population. The complexity becomes especially prominent when model’s parameters are not known and available measurements are limited. In this paper, we illustrate this challenge in a concrete scenario: we assume a simple communication scheme among identical individuals, inspired by how social honeybees emit the alarm pheromone to protect the colony in case of danger. Together, n individuals induce a population Markov chain with n parameters. In addition, we assume to be able to experimentally observe the states only after the steady-state is reached. In order to obtain the parameters of the individual’s behaviour, by utilising the data measurements for population, we combine two existing techniques. First, we use the tools for parameter synthesis for Markov chains with respect to temporal logic properties, and then we employ CEGAR-like reasoning to find the viable parameter space up to desired coverage. We report the performance on a number of synthetic data sets.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48772"/> <dc:contributor>Safranek, David</dc:contributor> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Safranek, David</dc:creator> <dc:creator>Hajnal, Matej</dc:creator> <dcterms:issued>2019-08-01</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Nouvian, Morgane</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Data-Informed Parameter Synthesis for Population Markov Chains</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-25T10:36:11Z</dc:date> </rdf:Description> </rdf:RDF>