Publikation:

Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom

Lade...
Vorschaubild

Dateien

Behrisch_0-263661.pdf
Behrisch_0-263661.pdfGröße: 1.32 MBDownloads: 401

Datum

2014

Autor:innen

Davey, James
Thonnard, Olivier
Kohlkammer, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2014, 33(3), pp. 411-420. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12397

Zusammenfassung

Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task.

We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Categories and Subject Descriptors (according to ACM CCS):, H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Search process

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEHRISCH, Michael, James DAVEY, Fabian FISCHER, Olivier THONNARD, Tobias SCHRECK, Daniel A. KEIM, Jörn KOHLKAMMER, 2014. Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom. In: Computer Graphics Forum. 2014, 33(3), pp. 411-420. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12397
BibTex
@article{Behrisch2014Visua-29866,
  year={2014},
  doi={10.1111/cgf.12397},
  title={Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom},
  number={3},
  volume={33},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={411--420},
  author={Behrisch, Michael and Davey, James and Fischer, Fabian and Thonnard, Olivier and Schreck, Tobias and Keim, Daniel A. and Kohlkammer, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29866">
    <dc:creator>Schreck, Tobias</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29866"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Thonnard, Olivier</dc:creator>
    <dc:contributor>Kohlkammer, Jörn</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task.&lt;br /&gt;&lt;br /&gt;We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:30:37Z</dcterms:available>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:creator>Davey, James</dc:creator>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Kohlkammer, Jörn</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Thonnard, Olivier</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29866/1/Behrisch_0-263661.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:30:37Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29866/1/Behrisch_0-263661.pdf"/>
    <dc:contributor>Davey, James</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen