Publikation: Nonuniqueness of Generalised Weak Solutions to the Primitive and Prandtl Equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We develop a convex integration scheme for constructing nonunique weak solutions to the hydrostatic Euler equations (also known as the inviscid primitive equations of oceanic and atmospheric dynamics) in both two and three dimensions. We also develop such a scheme for the construction of nonunique weak solutions to the three-dimensional viscous primitive equations, as well as the two-dimensional Prandtl equations. While in Boutros et al. (Calc Var Partial Differ Equ 62(8):219, 2023) the classical notion of weak solution to the hydrostatic Euler equations was generalised, we introduce here a further generalisation. For such generalised weak solutions, we show the existence and nonuniqueness for a large class of initial data. Moreover, we construct infinitely many examples of generalised weak solutions which do not conserve energy. The barotropic and baroclinic modes of solutions to the hydrostatic Euler equations (which are the average and the fluctuation of the horizontal velocity in the z -coordinate, respectively) that are constructed have different regularities.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BOUTROS, Daniel W., Simon MARKFELDER, Edriss S. TITI, 2024. Nonuniqueness of Generalised Weak Solutions to the Primitive and Prandtl Equations. In: Journal of Nonlinear Science. Springer. 2024, 34(4), 68. ISSN 0938-8974. eISSN 1432-1467. Verfügbar unter: doi: 10.1007/s00332-024-10032-8BibTex
@article{Boutros2024-08Nonun-71901, title={Nonuniqueness of Generalised Weak Solutions to the Primitive and Prandtl Equations}, year={2024}, doi={10.1007/s00332-024-10032-8}, number={4}, volume={34}, issn={0938-8974}, journal={Journal of Nonlinear Science}, author={Boutros, Daniel W. and Markfelder, Simon and Titi, Edriss S.}, note={Article Number: 68} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71901"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71901/4/Boutros_2-1d5jh6336ji0a1.pdf"/> <dcterms:title>Nonuniqueness of Generalised Weak Solutions to the Primitive and Prandtl Equations</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Titi, Edriss S.</dc:creator> <dc:contributor>Titi, Edriss S.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71901"/> <dcterms:abstract>We develop a convex integration scheme for constructing nonunique weak solutions to the hydrostatic Euler equations (also known as the inviscid primitive equations of oceanic and atmospheric dynamics) in both two and three dimensions. We also develop such a scheme for the construction of nonunique weak solutions to the three-dimensional viscous primitive equations, as well as the two-dimensional Prandtl equations. While in Boutros et al. (Calc Var Partial Differ Equ 62(8):219, 2023) the classical notion of weak solution to the hydrostatic Euler equations was generalised, we introduce here a further generalisation. For such generalised weak solutions, we show the existence and nonuniqueness for a large class of initial data. Moreover, we construct infinitely many examples of generalised weak solutions which do not conserve energy. The barotropic and baroclinic modes of solutions to the hydrostatic Euler equations (which are the average and the fluctuation of the horizontal velocity in the z -coordinate, respectively) that are constructed have different regularities.</dcterms:abstract> <dcterms:issued>2024-08</dcterms:issued> <dc:contributor>Markfelder, Simon</dc:contributor> <dc:creator>Markfelder, Simon</dc:creator> <dc:contributor>Boutros, Daniel W.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T11:56:14Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Boutros, Daniel W.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71901/4/Boutros_2-1d5jh6336ji0a1.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T11:56:14Z</dcterms:available> </rdf:Description> </rdf:RDF>