Publikation: In Situ Adjustable Nanogaps and In‐Plane Break Junctions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHAO, Xueyan, Xubin ZHANG, Kaikai YIN, Surong ZHANG, Zhikai ZHAO, Min TAN, Xiaona XU, Zhibin ZHAO, Maoning WANG, Bingqian XU, Takhee LEE, Elke SCHEER, Dong XIANG, 2023. In Situ Adjustable Nanogaps and In‐Plane Break Junctions. In: Small Methods. Wiley. 2023, 7(4), 2201427. eISSN 2366-9608. Available under: doi: 10.1002/smtd.202201427BibTex
@article{Zhao2023Adjus-60089, year={2023}, doi={10.1002/smtd.202201427}, title={In Situ Adjustable Nanogaps and In‐Plane Break Junctions}, number={4}, volume={7}, journal={Small Methods}, author={Zhao, Xueyan and Zhang, Xubin and Yin, Kaikai and Zhang, Surong and Zhao, Zhikai and Tan, Min and Xu, Xiaona and Zhao, Zhibin and Wang, Maoning and Xu, Bingqian and Lee, Takhee and Scheer, Elke and Xiang, Dong}, note={Article Number: 2201427} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/60089"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Zhao, Xueyan</dc:creator> <dc:contributor>Xu, Xiaona</dc:contributor> <dc:creator>Tan, Min</dc:creator> <dc:creator>Lee, Takhee</dc:creator> <dc:creator>Wang, Maoning</dc:creator> <dc:contributor>Zhang, Xubin</dc:contributor> <dc:creator>Zhao, Zhibin</dc:creator> <dc:contributor>Scheer, Elke</dc:contributor> <dc:creator>Zhao, Zhikai</dc:creator> <dc:contributor>Yin, Kaikai</dc:contributor> <dc:contributor>Zhao, Zhikai</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-03T15:27:30Z</dc:date> <dc:language>eng</dc:language> <dcterms:title>In Situ Adjustable Nanogaps and In‐Plane Break Junctions</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Zhang, Xubin</dc:creator> <dc:creator>Xu, Bingqian</dc:creator> <dc:contributor>Tan, Min</dc:contributor> <dc:contributor>Lee, Takhee</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.</dcterms:abstract> <dc:contributor>Zhang, Surong</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wang, Maoning</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60089/1/Zhao_2-1d5eo34lyiv1w2.pdf"/> <dcterms:issued>2023</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-03T15:27:30Z</dcterms:available> <dc:contributor>Zhao, Zhibin</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60089/1/Zhao_2-1d5eo34lyiv1w2.pdf"/> <dc:creator>Yin, Kaikai</dc:creator> <dc:contributor>Xu, Bingqian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Xiang, Dong</dc:creator> <dc:creator>Scheer, Elke</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/60089"/> <dc:creator>Xu, Xiaona</dc:creator> <dc:creator>Zhang, Surong</dc:creator> <dc:contributor>Zhao, Xueyan</dc:contributor> <dc:contributor>Xiang, Dong</dc:contributor> </rdf:Description> </rdf:RDF>