Publikation:

In Situ Adjustable Nanogaps and In‐Plane Break Junctions

Lade...
Vorschaubild

Dateien

Zhao_2-1d5eo34lyiv1w2.pdf
Zhao_2-1d5eo34lyiv1w2.pdfGröße: 1.28 MBDownloads: 16

Datum

2023

Autor:innen

Zhao, Xueyan
Zhang, Xubin
Yin, Kaikai
Zhang, Surong
Zhao, Zhikai
Tan, Min
Xu, Xiaona
Zhao, Zhibin
Xu, Bingqian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Small Methods. Wiley. 2023, 7(4), 2201427. eISSN 2366-9608. Available under: doi: 10.1002/smtd.202201427

Zusammenfassung

The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Nanogaps, Ångstrom modulation resolution, molecular break junctions

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHAO, Xueyan, Xubin ZHANG, Kaikai YIN, Surong ZHANG, Zhikai ZHAO, Min TAN, Xiaona XU, Zhibin ZHAO, Maoning WANG, Bingqian XU, Takhee LEE, Elke SCHEER, Dong XIANG, 2023. In Situ Adjustable Nanogaps and In‐Plane Break Junctions. In: Small Methods. Wiley. 2023, 7(4), 2201427. eISSN 2366-9608. Available under: doi: 10.1002/smtd.202201427
BibTex
@article{Zhao2023Adjus-60089,
  year={2023},
  doi={10.1002/smtd.202201427},
  title={In Situ Adjustable Nanogaps and In‐Plane Break Junctions},
  number={4},
  volume={7},
  journal={Small Methods},
  author={Zhao, Xueyan and Zhang, Xubin and Yin, Kaikai and Zhang, Surong and Zhao, Zhikai and Tan, Min and Xu, Xiaona and Zhao, Zhibin and Wang, Maoning and Xu, Bingqian and Lee, Takhee and Scheer, Elke and Xiang, Dong},
  note={Article Number: 2201427}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/60089">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Zhao, Xueyan</dc:creator>
    <dc:contributor>Xu, Xiaona</dc:contributor>
    <dc:creator>Tan, Min</dc:creator>
    <dc:creator>Lee, Takhee</dc:creator>
    <dc:creator>Wang, Maoning</dc:creator>
    <dc:contributor>Zhang, Xubin</dc:contributor>
    <dc:creator>Zhao, Zhibin</dc:creator>
    <dc:contributor>Scheer, Elke</dc:contributor>
    <dc:creator>Zhao, Zhikai</dc:creator>
    <dc:contributor>Yin, Kaikai</dc:contributor>
    <dc:contributor>Zhao, Zhikai</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-03T15:27:30Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>In Situ Adjustable Nanogaps and In‐Plane Break Junctions</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhang, Xubin</dc:creator>
    <dc:creator>Xu, Bingqian</dc:creator>
    <dc:contributor>Tan, Min</dc:contributor>
    <dc:contributor>Lee, Takhee</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.</dcterms:abstract>
    <dc:contributor>Zhang, Surong</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wang, Maoning</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60089/1/Zhao_2-1d5eo34lyiv1w2.pdf"/>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-03T15:27:30Z</dcterms:available>
    <dc:contributor>Zhao, Zhibin</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60089/1/Zhao_2-1d5eo34lyiv1w2.pdf"/>
    <dc:creator>Yin, Kaikai</dc:creator>
    <dc:contributor>Xu, Bingqian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Xiang, Dong</dc:creator>
    <dc:creator>Scheer, Elke</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/60089"/>
    <dc:creator>Xu, Xiaona</dc:creator>
    <dc:creator>Zhang, Surong</dc:creator>
    <dc:contributor>Zhao, Xueyan</dc:contributor>
    <dc:contributor>Xiang, Dong</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen