Publikation: Continuity Points Via Riesz Potentials for ℂ-Elliptic Operators
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Diening, Lars
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Quarterly Journal of Mathematics. Oxford University Press (OUP). 2020, 71(4), pp. 1201-1218. ISSN 0033-5606. eISSN 1464-3847. Available under: doi: 10.1093/qmathj/haaa027
Zusammenfassung
We establish a Riesz potential criterion for Lebesgue continuity points of functions of bounded A-variation, where A is a C-elliptic differential operator of arbitrary order. This result generalizes a potential criterion that is known for full gradients to the case where full gradient estimates are not available by virtue of Ornstein’s non-inequality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DIENING, Lars, Franz GMEINEDER, 2020. Continuity Points Via Riesz Potentials for ℂ-Elliptic Operators. In: The Quarterly Journal of Mathematics. Oxford University Press (OUP). 2020, 71(4), pp. 1201-1218. ISSN 0033-5606. eISSN 1464-3847. Available under: doi: 10.1093/qmathj/haaa027BibTex
@article{Diening2020Conti-53868, year={2020}, doi={10.1093/qmathj/haaa027}, title={Continuity Points Via Riesz Potentials for ℂ-Elliptic Operators}, number={4}, volume={71}, issn={0033-5606}, journal={The Quarterly Journal of Mathematics}, pages={1201--1218}, author={Diening, Lars and Gmeineder, Franz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53868"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-01T08:39:09Z</dc:date> <dcterms:abstract xml:lang="eng">We establish a Riesz potential criterion for Lebesgue continuity points of functions of bounded A-variation, where A is a C-elliptic differential operator of arbitrary order. This result generalizes a potential criterion that is known for full gradients to the case where full gradient estimates are not available by virtue of Ornstein’s non-inequality.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53868"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-01T08:39:09Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Continuity Points Via Riesz Potentials for ℂ-Elliptic Operators</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Diening, Lars</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:creator>Diening, Lars</dc:creator> <dc:creator>Gmeineder, Franz</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja