Publikation: Positive Ulrich sheaves
Lade...
Dateien
Datum
2024
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Canadian Journal of Mathematics. Cambridge University Press. 2024, 76(3), S. 881-914. ISSN 0008-414X. eISSN 1496-4279. Verfügbar unter: doi: 10.4153/s0008414x23000263
Zusammenfassung
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HANSELKA, Christoph, Mario KUMMER, 2024. Positive Ulrich sheaves. In: Canadian Journal of Mathematics. Cambridge University Press. 2024, 76(3), S. 881-914. ISSN 0008-414X. eISSN 1496-4279. Verfügbar unter: doi: 10.4153/s0008414x23000263BibTex
@article{Hanselka2024-06Posit-66933, year={2024}, doi={10.4153/s0008414x23000263}, title={Positive Ulrich sheaves}, number={3}, volume={76}, issn={0008-414X}, journal={Canadian Journal of Mathematics}, pages={881--914}, author={Hanselka, Christoph and Kummer, Mario} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66933"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Hanselka, Christoph</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract>We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66933/1/Hanselka_2-1ctwakow8lds57.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66933/1/Hanselka_2-1ctwakow8lds57.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66933"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kummer, Mario</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Positive Ulrich sheaves</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-17T07:51:53Z</dcterms:available> <dc:creator>Kummer, Mario</dc:creator> <dcterms:issued>2024-06</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-17T07:51:53Z</dc:date> <dc:contributor>Hanselka, Christoph</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja