Publikation:

A simple bootstrap bandwidth selector for local polynomial fitting

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Statistical Computation and Simulation. Taylor & Francis. 2009, 79(12), pp. 1425-1439. ISSN 0094-9655. eISSN 1563-5163. Available under: doi: 10.1080/00949650802352019

Zusammenfassung

A new, fully data-driven bandwidth selector with a double smoothing (DS) bias term and a data-driven variance estimator is developed following the bootstrap idea. The data-driven variance estimation does not involve any additional bandwidth selection. The proposed bandwidth selector convergences faster than a plug-in one due to the DS bias estimate, whereas the data-driven variance improves its finite sample performance clearly and makes it stable. Asymptotic results of the proposals are obtained. A comparative simulation study was done to show the overall gains and the gains obtained by improving either the bias term or the variance estimate, respectively. It is shown that the use of a good variance estimator is more important when the sample size is relatively small.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENG, Yuanhua, Siegfried HEILER, 2009. A simple bootstrap bandwidth selector for local polynomial fitting. In: Journal of Statistical Computation and Simulation. Taylor & Francis. 2009, 79(12), pp. 1425-1439. ISSN 0094-9655. eISSN 1563-5163. Available under: doi: 10.1080/00949650802352019
BibTex
@article{Feng2009simpl-57988,
  year={2009},
  doi={10.1080/00949650802352019},
  title={A simple bootstrap bandwidth selector for local polynomial fitting},
  number={12},
  volume={79},
  issn={0094-9655},
  journal={Journal of Statistical Computation and Simulation},
  pages={1425--1439},
  author={Feng, Yuanhua and Heiler, Siegfried}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57988">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T11:24:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Heiler, Siegfried</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>A simple bootstrap bandwidth selector for local polynomial fitting</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57988"/>
    <dc:creator>Heiler, Siegfried</dc:creator>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T11:24:57Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">A new, fully data-driven bandwidth selector with a double smoothing (DS) bias term and a data-driven variance estimator is developed following the bootstrap idea. The data-driven variance estimation does not involve any additional bandwidth selection. The proposed bandwidth selector convergences faster than a plug-in one due to the DS bias estimate, whereas the data-driven variance improves its finite sample performance clearly and makes it stable. Asymptotic results of the proposals are obtained. A comparative simulation study was done to show the overall gains and the gains obtained by improving either the bias term or the variance estimate, respectively. It is shown that the use of a good variance estimator is more important when the sample size is relatively small.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen