Publikation:

Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit

Lade...
Vorschaubild

Dateien

Xue_2-1cjwu9acn37bq2.pdf
Xue_2-1cjwu9acn37bq2.pdfGröße: 969.85 KBDownloads: 25

Datum

2019

Autor:innen

Xue, Xiao
Watson, Thomas F.
Ward, Daniel R.
Savage, Donald E.
Lagally, Max G.
Friesen, Mark
Coppersmith, Susan N.
Eriksson, Mark A.
Vandersypen, Lieven M. K.
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review X. American Physical Society (APS). 2019, 10(2), 021006. eISSN 2160-3308. Available under: doi: 10.1103/PhysRevX.10.021006

Zusammenfassung

Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step toward the implementation of quantum error-correcting codes, quantum nondemolition measurements are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement quantum nondemolition measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this procedure enhances the logical readout fidelity from 75.5±0.3% to 94.5±0.2% after 15 ancilla readouts. In addition, we compare the conventional thresholding method with an improved signal processing method called soft decoding that makes use of analog information in the readout signal to better estimate the state of the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number of repetitions when the readout errors become limited by Gaussian noise, for instance, in the case of readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum error correction with spin qubits in silicon.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XUE, Xiao, Benjamin D'ANJOU, Thomas F. WATSON, Daniel R. WARD, Donald E. SAVAGE, Max G. LAGALLY, Mark FRIESEN, Susan N. COPPERSMITH, Mark A. ERIKSSON, Lieven M. K. VANDERSYPEN, 2019. Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit. In: Physical Review X. American Physical Society (APS). 2019, 10(2), 021006. eISSN 2160-3308. Available under: doi: 10.1103/PhysRevX.10.021006
BibTex
@article{Xue2019-11-19T17:37:44ZRepet-50727,
  year={2019},
  doi={10.1103/PhysRevX.10.021006},
  title={Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit},
  number={2},
  volume={10},
  journal={Physical Review X},
  author={Xue, Xiao and D'Anjou, Benjamin and Watson, Thomas F. and Ward, Daniel R. and Savage, Donald E. and Lagally, Max G. and Friesen, Mark and Coppersmith, Susan N. and Eriksson, Mark A. and Vandersypen, Lieven M. K.},
  note={Article Number: 021006}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50727">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-08T12:33:33Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50727/1/Xue_2-1cjwu9acn37bq2.pdf"/>
    <dc:creator>Watson, Thomas F.</dc:creator>
    <dc:creator>Ward, Daniel R.</dc:creator>
    <dc:creator>D'Anjou, Benjamin</dc:creator>
    <dc:creator>Friesen, Mark</dc:creator>
    <dc:contributor>Vandersypen, Lieven M. K.</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Xue, Xiao</dc:creator>
    <dc:contributor>Friesen, Mark</dc:contributor>
    <dc:contributor>Coppersmith, Susan N.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step toward the implementation of quantum error-correcting codes, quantum nondemolition measurements are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement quantum nondemolition measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this procedure enhances the logical readout fidelity from 75.5±0.3% to 94.5±0.2% after 15 ancilla readouts. In addition, we compare the conventional thresholding method with an improved signal processing method called soft decoding that makes use of analog information in the readout signal to better estimate the state of the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number of repetitions when the readout errors become limited by Gaussian noise, for instance, in the case of readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum error correction with spin qubits in silicon.</dcterms:abstract>
    <dc:contributor>Lagally, Max G.</dc:contributor>
    <dc:contributor>Xue, Xiao</dc:contributor>
    <dc:contributor>D'Anjou, Benjamin</dc:contributor>
    <dc:contributor>Ward, Daniel R.</dc:contributor>
    <dc:creator>Vandersypen, Lieven M. K.</dc:creator>
    <dc:creator>Lagally, Max G.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50727/1/Xue_2-1cjwu9acn37bq2.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Eriksson, Mark A.</dc:creator>
    <dc:contributor>Watson, Thomas F.</dc:contributor>
    <dc:creator>Coppersmith, Susan N.</dc:creator>
    <dcterms:title>Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit</dcterms:title>
    <dc:creator>Savage, Donald E.</dc:creator>
    <dcterms:issued>2019-11-19T17:37:44Z</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50727"/>
    <dc:contributor>Savage, Donald E.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-08T12:33:33Z</dcterms:available>
    <dc:contributor>Eriksson, Mark A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Unbekannt
Diese Publikation teilen