Publikation:

Coarse grained simulations of peptide nanoparticle formation : the role of local structure and nonbonded interactions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation (JCTC). 2019, 15(2), pp. 1453-1462. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.8b01138

Zusammenfassung

Biocompatible nanostructures play an important role in drug delivery and tissue engineering applications. A controlled growth of peptide based nanoparticles with specific morphology needs an understanding of the role of the sequence and solvation properties. In a previous combined experimental-computational study we identified factors that govern the formation of well-defined aggregates by self-assembled pentapeptides, using single amino acid substitution (Mishra, N. K.; Jain, A.; Peter, C.; Verma, S. J. Phys. Chem. B 2017, 121, 8155-8161). The atomistic simulation study suggested a subtle interplay between various peptide properties like igidity/flexibility, hydrogen-bonding, partitioning of aromatic residues and dimerization of peptides that determine the different morphologies, while the overall aggregation propensity was mostly determined by the composition of the methanol/water solvent mixture. The size of the simulated aggregates and the timescales were rather restricted due to the atomistic character of the study. Here, we present an extension to a coarse grained representation which allows for much larger system sizes and longer time scales. To this end, we have optimized a MARTINI model so that it can deal with a system that relies on local structure formation. We combine information on local behavior from atomistic studies and apply supportive dihedral angles together with local adjustment of the bead types to find the right interplay of solvent and peptides. Finally, to mimic the dimers, an introduction of additional bonds between the monomers was necessary. By adding the modifications stepwise we were able to disentangle the influences of the various contributions, like rigidity/flexibility of the peptides, the dimer formation, or the non-bonded properties of the beads, on the overall aggregation propensity and morphology of the nanoparticles. The obtained models resemble the experimental and atomistic behavior and are able to provide mechanistic insight into peptide nanoparticle formation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JAIN, Alok, Christoph GLOBISCH, Sandeep VERMA, Christine PETER, 2019. Coarse grained simulations of peptide nanoparticle formation : the role of local structure and nonbonded interactions. In: Journal of Chemical Theory and Computation (JCTC). 2019, 15(2), pp. 1453-1462. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.8b01138
BibTex
@article{Jain2019-02-12Coars-44619,
  year={2019},
  doi={10.1021/acs.jctc.8b01138},
  title={Coarse grained simulations of peptide nanoparticle formation : the role of local structure and nonbonded interactions},
  number={2},
  volume={15},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation (JCTC)},
  pages={1453--1462},
  author={Jain, Alok and Globisch, Christoph and Verma, Sandeep and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44619">
    <dcterms:issued>2019-02-12</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44619"/>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:creator>Verma, Sandeep</dc:creator>
    <dc:contributor>Globisch, Christoph</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Jain, Alok</dc:creator>
    <dcterms:abstract xml:lang="eng">Biocompatible nanostructures play an important role in drug delivery and tissue engineering applications. A controlled growth of peptide based nanoparticles with specific morphology needs an understanding of the role of the sequence and solvation properties. In a previous combined experimental-computational study we identified factors that govern the formation of well-defined aggregates by self-assembled pentapeptides, using single amino acid substitution (Mishra, N. K.; Jain, A.; Peter, C.; Verma, S. J. Phys. Chem. B 2017, 121, 8155-8161). The atomistic simulation study suggested a subtle interplay between various peptide properties like igidity/flexibility, hydrogen-bonding, partitioning of aromatic residues and dimerization of peptides that determine the different morphologies, while the overall aggregation propensity was mostly determined by the composition of the methanol/water solvent mixture. The size of the simulated aggregates and the timescales were rather restricted due to the atomistic character of the study. Here, we present an extension to a coarse grained representation which allows for much larger system sizes and longer time scales. To this end, we have optimized a MARTINI model so that it can deal with a system that relies on local structure formation. We combine information on local behavior from atomistic studies and apply supportive dihedral angles together with local adjustment of the bead types to find the right interplay of solvent and peptides. Finally, to mimic the dimers, an introduction of additional bonds between the monomers was necessary. By adding the modifications stepwise we were able to disentangle the influences of the various contributions, like rigidity/flexibility of the peptides, the dimer formation, or the non-bonded properties of the beads, on the overall aggregation propensity and morphology of the nanoparticles. The obtained models resemble the experimental and atomistic behavior and are able to provide mechanistic insight into peptide nanoparticle formation.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-18T12:27:27Z</dcterms:available>
    <dc:contributor>Verma, Sandeep</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-18T12:27:27Z</dc:date>
    <dcterms:title>Coarse grained simulations of peptide nanoparticle formation : the role of local structure and nonbonded interactions</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:creator>Globisch, Christoph</dc:creator>
    <dc:contributor>Jain, Alok</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen