Publikation: Recent developments in non- and semiparametric regression with fractional time series errors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper summarizes recent developments in non- and semiparametric regres- sion with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the dependence structure of the error process is estimated by approximate maximum likelihood. Asymptotic properties of these estimators are described briey. The focus is on describing the developments of bandwidth selection in this context based on the iterative plug-in idea (Gasser et al., 1991) and some detailed computational aspects. Applications in the framework of the SEMIFAR (semiparametric fractional autoregressive) model (Beran, 1999) illustrate the practical usefulness of the methods described here.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Yuanhua FENG, 2002. Recent developments in non- and semiparametric regression with fractional time series errorsBibTex
@techreport{Beran2002Recen-613, year={2002}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Recent developments in non- and semiparametric regression with fractional time series errors}, number={2002/13}, author={Beran, Jan and Feng, Yuanhua} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/613"> <dcterms:issued>2002</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/613"/> <dc:contributor>Feng, Yuanhua</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:14Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/613/1/02-13.pdf"/> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:14Z</dcterms:available> <dc:creator>Feng, Yuanhua</dc:creator> <dcterms:title>Recent developments in non- and semiparametric regression with fractional time series errors</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper summarizes recent developments in non- and semiparametric regres- sion with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the dependence structure of the error process is estimated by approximate maximum likelihood. Asymptotic properties of these estimators are described briey. The focus is on describing the developments of bandwidth selection in this context based on the iterative plug-in idea (Gasser et al., 1991) and some detailed computational aspects. Applications in the framework of the SEMIFAR (semiparametric fractional autoregressive) model (Beran, 1999) illustrate the practical usefulness of the methods described here.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/613/1/02-13.pdf"/> <dc:contributor>Beran, Jan</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Beran, Jan</dc:creator> </rdf:Description> </rdf:RDF>