Publikation:

Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Gallop, Max
Weschle, Simon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Science Research and Methods. Cambridge University Press. 2019, 7(2), pp. 367-384. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2016.53

Zusammenfassung

Many commonly used data sources in the social sciences suffer from non-random measurement error, understood as mis-measurement of a variable that is systematically related to another variable. We argue that studies relying on potentially suspect data should take the threat this poses to inference seriously and address it routinely in a principled manner. In this article, we aid researchers in this task by introducing a sensitivity analysis approach to non-random measurement error. The method can be used for any type of data or statistical model, is simple to execute, and straightforward to communicate. This makes it possible for researchers to routinely report the robustness of their inference to the presence of non-random measurement error. We demonstrate the sensitivity analysis approach by applying it to two recent studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GALLOP, Max, Simon WESCHLE, 2019. Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach. In: Political Science Research and Methods. Cambridge University Press. 2019, 7(2), pp. 367-384. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2016.53
BibTex
@article{Gallop2019Asses-54659,
  year={2019},
  doi={10.1017/psrm.2016.53},
  title={Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach},
  number={2},
  volume={7},
  issn={2049-8470},
  journal={Political Science Research and Methods},
  pages={367--384},
  author={Gallop, Max and Weschle, Simon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54659">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gallop, Max</dc:creator>
    <dcterms:abstract xml:lang="eng">Many commonly used data sources in the social sciences suffer from non-random measurement error, understood as mis-measurement of a variable that is systematically related to another variable. We argue that studies relying on potentially suspect data should take the threat this poses to inference seriously and address it routinely in a principled manner. In this article, we aid researchers in this task by introducing a sensitivity analysis approach to non-random measurement error. The method can be used for any type of data or statistical model, is simple to execute, and straightforward to communicate. This makes it possible for researchers to routinely report the robustness of their inference to the presence of non-random measurement error. We demonstrate the sensitivity analysis approach by applying it to two recent studies.</dcterms:abstract>
    <dc:contributor>Gallop, Max</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Weschle, Simon</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Weschle, Simon</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54659"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T09:38:24Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T09:38:24Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen