Publikation: Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many commonly used data sources in the social sciences suffer from non-random measurement error, understood as mis-measurement of a variable that is systematically related to another variable. We argue that studies relying on potentially suspect data should take the threat this poses to inference seriously and address it routinely in a principled manner. In this article, we aid researchers in this task by introducing a sensitivity analysis approach to non-random measurement error. The method can be used for any type of data or statistical model, is simple to execute, and straightforward to communicate. This makes it possible for researchers to routinely report the robustness of their inference to the presence of non-random measurement error. We demonstrate the sensitivity analysis approach by applying it to two recent studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GALLOP, Max, Simon WESCHLE, 2019. Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach. In: Political Science Research and Methods. Cambridge University Press. 2019, 7(2), pp. 367-384. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2016.53BibTex
@article{Gallop2019Asses-54659, year={2019}, doi={10.1017/psrm.2016.53}, title={Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach}, number={2}, volume={7}, issn={2049-8470}, journal={Political Science Research and Methods}, pages={367--384}, author={Gallop, Max and Weschle, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54659"> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Assessing the Impact of Non-Random Measurement Error on Inference : A Sensitivity Analysis Approach</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gallop, Max</dc:creator> <dcterms:abstract xml:lang="eng">Many commonly used data sources in the social sciences suffer from non-random measurement error, understood as mis-measurement of a variable that is systematically related to another variable. We argue that studies relying on potentially suspect data should take the threat this poses to inference seriously and address it routinely in a principled manner. In this article, we aid researchers in this task by introducing a sensitivity analysis approach to non-random measurement error. The method can be used for any type of data or statistical model, is simple to execute, and straightforward to communicate. This makes it possible for researchers to routinely report the robustness of their inference to the presence of non-random measurement error. We demonstrate the sensitivity analysis approach by applying it to two recent studies.</dcterms:abstract> <dc:contributor>Gallop, Max</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Weschle, Simon</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Weschle, Simon</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54659"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T09:38:24Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T09:38:24Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>