Publikation: Race to the Bottom : Spatial Aggregation and Event Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Researchers now have greater access to granular georeferenced (i.e., spatial) data on social and political phenomena than ever before. Such data have seen wide use, as they offer the potential for researchers to analyze local phenomena, test mechanisms, and better understand micro-level behavior. With these political event data, it has become increasingly common for researchers to select the smallest spatial scale permitted by the data. We argue that this practice requires greater scrutiny, as smaller spatial or temporal scales do not necessarily improve the quality of inferences. While highly disaggregated data reduce some threats to inference (e.g., aggregation bias), they increase the risk of others (e.g., outcome misclassification). Therefore, we argue that researchers should adopt a more principled approach when selecting the spatial scale for their analysis. To help inform this choice, we characterize the aggregation problem for spatial data, discuss the consequences of too much (or too little) aggregation, and provide some guidance for applied researchers. We demonstrate these issues using both simulated experiments and an analysis of spatial patterns of violence in Afghanistan.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COOK, Scott J., Nils B. WEIDMANN, 2022. Race to the Bottom : Spatial Aggregation and Event Data. In: International Interactions. Routledge, Taylor & Francis Group. 2022, 48(3), pp. 471-491. ISSN 0305-0629. eISSN 1547-7444. Available under: doi: 10.1080/03050629.2022.2025365BibTex
@article{Cook2022Botto-56882, year={2022}, doi={10.1080/03050629.2022.2025365}, title={Race to the Bottom : Spatial Aggregation and Event Data}, number={3}, volume={48}, issn={0305-0629}, journal={International Interactions}, pages={471--491}, author={Cook, Scott J. and Weidmann, Nils B.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56882"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56882/1/Cook_2-1c2uofhd7gh3d1.pdf"/> <dcterms:abstract xml:lang="eng">Researchers now have greater access to granular georeferenced (i.e., spatial) data on social and political phenomena than ever before. Such data have seen wide use, as they offer the potential for researchers to analyze local phenomena, test mechanisms, and better understand micro-level behavior. With these political event data, it has become increasingly common for researchers to select the smallest spatial scale permitted by the data. We argue that this practice requires greater scrutiny, as smaller spatial or temporal scales do not necessarily improve the quality of inferences. While highly disaggregated data reduce some threats to inference (e.g., aggregation bias), they increase the risk of others (e.g., outcome misclassification). Therefore, we argue that researchers should adopt a more principled approach when selecting the spatial scale for their analysis. To help inform this choice, we characterize the aggregation problem for spatial data, discuss the consequences of too much (or too little) aggregation, and provide some guidance for applied researchers. We demonstrate these issues using both simulated experiments and an analysis of spatial patterns of violence in Afghanistan.</dcterms:abstract> <dcterms:title>Race to the Bottom : Spatial Aggregation and Event Data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Weidmann, Nils B.</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dc:creator>Weidmann, Nils B.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56882/1/Cook_2-1c2uofhd7gh3d1.pdf"/> <dc:creator>Cook, Scott J.</dc:creator> <dc:contributor>Cook, Scott J.</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-16T09:47:26Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-16T09:47:26Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56882"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>