Publikation: Lessons from Speciation Dynamics : How to Generate Selective Pressure Towards Diversity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent approaches in evolutionary robotics (ER) propose to generate behavioral diversity in order to evolve desired behaviors more easily. These approaches require the definition of a behavioral distance, which often includes task-specific features and hence a priori knowledge. Alternative methods, which do not explicitly force selective pressure towards diversity (SPTD) but still generate it, are known from the field of artificial life, such as in artificial ecologies (AEs). In this study, we investigate how SPTD is generated without task-specific behavioral features or other forms of a priori knowledge and detect how methods of generating SPTD can be transferred from the domain of AE to ER. A promising finding is that in both types of systems, in systems from ER that generate behavioral diversity and also in the investigated speciation model, selective pressure is generated towards unpopulated regions of search space. In a simple case study we investigate the practical implications of these findings and point to options for transferring the idea of self-organizing SPTD in AEs to the domain of ER.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMANN, Heiko, 2015. Lessons from Speciation Dynamics : How to Generate Selective Pressure Towards Diversity. In: Artificial Life. MIT Press. 2015, 21(4), pp. 464-480. ISSN 1064-5462. eISSN 1530-9185. Available under: doi: 10.1162/ARTL_a_00186BibTex
@article{Hamann2015Lesso-59655, year={2015}, doi={10.1162/ARTL_a_00186}, title={Lessons from Speciation Dynamics : How to Generate Selective Pressure Towards Diversity}, number={4}, volume={21}, issn={1064-5462}, journal={Artificial Life}, pages={464--480}, author={Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59655"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T08:56:46Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T08:56:46Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59655"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Hamann, Heiko</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Recent approaches in evolutionary robotics (ER) propose to generate behavioral diversity in order to evolve desired behaviors more easily. These approaches require the definition of a behavioral distance, which often includes task-specific features and hence a priori knowledge. Alternative methods, which do not explicitly force selective pressure towards diversity (SPTD) but still generate it, are known from the field of artificial life, such as in artificial ecologies (AEs). In this study, we investigate how SPTD is generated without task-specific behavioral features or other forms of a priori knowledge and detect how methods of generating SPTD can be transferred from the domain of AE to ER. A promising finding is that in both types of systems, in systems from ER that generate behavioral diversity and also in the investigated speciation model, selective pressure is generated towards unpopulated regions of search space. In a simple case study we investigate the practical implications of these findings and point to options for transferring the idea of self-organizing SPTD in AEs to the domain of ER.</dcterms:abstract> <dcterms:title>Lessons from Speciation Dynamics : How to Generate Selective Pressure Towards Diversity</dcterms:title> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>