Publikation: Electric-field control and noise protection of the flopping-mode spin qubit
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose and analyze a “flopping-mode” mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single-dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double- to the single-dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second-order sweet spot with reduced sensitivity to charge fluctuations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITO, Mónica, Xanthe CROOT, Christoph ADELSBERGER, Stefan PUTZ, Xiao MI, Jason R. PETTA, Guido BURKARD, 2019. Electric-field control and noise protection of the flopping-mode spin qubit. In: Physical Review B. 2019, 100(12), 125430. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.100.125430BibTex
@article{Benito2019Elect-47164, year={2019}, doi={10.1103/PhysRevB.100.125430}, title={Electric-field control and noise protection of the flopping-mode spin qubit}, number={12}, volume={100}, issn={2469-9950}, journal={Physical Review B}, author={Benito, Mónica and Croot, Xanthe and Adelsberger, Christoph and Putz, Stefan and Mi, Xiao and Petta, Jason R. and Burkard, Guido}, note={Article Number: 125430} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47164"> <dc:contributor>Putz, Stefan</dc:contributor> <dcterms:abstract xml:lang="eng">We propose and analyze a “flopping-mode” mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single-dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double- to the single-dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second-order sweet spot with reduced sensitivity to charge fluctuations.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Electric-field control and noise protection of the flopping-mode spin qubit</dcterms:title> <dcterms:issued>2019</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Putz, Stefan</dc:creator> <dc:creator>Croot, Xanthe</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47164"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Petta, Jason R.</dc:creator> <dc:contributor>Petta, Jason R.</dc:contributor> <dc:creator>Adelsberger, Christoph</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-09T09:46:16Z</dc:date> <dc:contributor>Adelsberger, Christoph</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-09T09:46:16Z</dcterms:available> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Mi, Xiao</dc:creator> <dc:contributor>Mi, Xiao</dc:contributor> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Benito, Mónica</dc:contributor> <dc:contributor>Croot, Xanthe</dc:contributor> <dc:creator>Benito, Mónica</dc:creator> </rdf:Description> </rdf:RDF>