Publikation:

Inverse Procedural Modeling of Branching Structures by Inferring L-Systems

Lade...
Vorschaubild

Dateien

Guo_2-1bwz7hxf8eixx3.pdf
Guo_2-1bwz7hxf8eixx3.pdfGröße: 2.96 MBDownloads: 1261

Datum

2020

Autor:innen

Jiang, Haiyong
Benes, Bedrich
Lischinski, Dani
Huang, Hui

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Graphics. Association for Computing Machinery (ACM). 2020, 39(5), pp. 1-13. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3394105

Zusammenfassung

We introduce an inverse procedural modeling approach that learns L-system representations of pixel images with branching structures. Our fully automatic model generates a compact set of textual rewriting rules that describe the input. We use deep learning to discover atomic structures such as line segments or branchings. Orientation and scaling of these structures is determined and the detected structures are combined into a tree. The initial representation is analyzed, and repeating parts are encoded into a small grammar by using greedy optimization while the user can control the size of the detected rules. The output is an L-system that represents the input image as a simple text and a set of terminal symbols. We apply our approach to a variety of examples, demonstrate its robustness against noise and blur, and we show that it can detect user sketches and complex input structures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GUO, Jianwei, Haiyong JIANG, Bedrich BENES, Oliver DEUSSEN, Dani LISCHINSKI, Hui HUANG, 2020. Inverse Procedural Modeling of Branching Structures by Inferring L-Systems. In: ACM Transactions on Graphics. Association for Computing Machinery (ACM). 2020, 39(5), pp. 1-13. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3394105
BibTex
@article{Guo2020-06-15Inver-49640,
  year={2020},
  doi={10.1145/3394105},
  title={Inverse Procedural Modeling of Branching Structures by Inferring L-Systems},
  number={5},
  volume={39},
  issn={0730-0301},
  journal={ACM Transactions on Graphics},
  pages={1--13},
  author={Guo, Jianwei and Jiang, Haiyong and Benes, Bedrich and Deussen, Oliver and Lischinski, Dani and Huang, Hui}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49640">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Jiang, Haiyong</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2020-06-15</dcterms:issued>
    <dc:creator>Guo, Jianwei</dc:creator>
    <dc:creator>Lischinski, Dani</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Jiang, Haiyong</dc:creator>
    <dc:contributor>Guo, Jianwei</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49640"/>
    <dcterms:title>Inverse Procedural Modeling of Branching Structures by Inferring L-Systems</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49640/1/Guo_2-1bwz7hxf8eixx3.pdf"/>
    <dc:contributor>Benes, Bedrich</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-26T06:57:06Z</dc:date>
    <dc:creator>Huang, Hui</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-26T06:57:06Z</dcterms:available>
    <dc:contributor>Huang, Hui</dc:contributor>
    <dcterms:abstract xml:lang="eng">We introduce an inverse procedural modeling approach that learns L-system representations of pixel images with branching structures. Our fully automatic model generates a compact set of textual rewriting rules that describe the input. We use deep learning to discover atomic structures such as line segments or branchings. Orientation and scaling of these structures is determined and the detected structures are combined into a tree. The initial representation is analyzed, and repeating parts are encoded into a small grammar by using greedy optimization while the user can control the size of the detected rules. The output is an L-system that represents the input image as a simple text and a set of terminal symbols. We apply our approach to a variety of examples, demonstrate its robustness against noise and blur, and we show that it can detect user sketches and complex input structures.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49640/1/Guo_2-1bwz7hxf8eixx3.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Benes, Bedrich</dc:creator>
    <dc:contributor>Lischinski, Dani</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen