Publikation:

Widened Learning of Portfolio Selection for Index Tracking

Lade...
Vorschaubild

Dateien

Gavriushina_2-1bwuwdbe6hpjq1.pdf
Gavriushina_2-1bwuwdbe6hpjq1.pdfGröße: 976.88 KBDownloads: 728

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This master’s thesis considers index tracking from the perspective of solution space exploration. Several search space heuristics are used in combination with different portfolio optimization models in order to select a tracking portfolio with returns that mimic a benchmark index. Even with the fastest hardware and the most massively parallel systems available today, it is infeasible to conduct an exhaustive search for the large solution space in a reasonable time. Instead of increasing the number of parallel resources with the aim to traverse as much solution space as possible, we try to obtain the best use of every parallel resource. With this aim we introduce several portfolio diversity measures. Experimental results conducted on real-world datasets show that adding diversity to the set of parallel search paths can provide a better solution (tracking portfolio) due to exploration of disparate solution space regions. However, the choice of the diversity measure plays an important role. Poor path diversification can hinder the progress towards a better solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Widened Learning, Index tracking, Tracking portfolio, Portfolio selection, Parallelism, Diversity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GAVRIUSHINA, Iuliia, 2018. Widened Learning of Portfolio Selection for Index Tracking [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Gavriushina2018Widen-44104,
  year={2018},
  title={Widened Learning of Portfolio Selection for Index Tracking},
  address={Konstanz},
  school={Universität Konstanz},
  author={Gavriushina, Iuliia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44104">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44104"/>
    <dc:contributor>Gavriushina, Iuliia</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Gavriushina, Iuliia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Widened Learning of Portfolio Selection for Index Tracking</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44104/5/Gavriushina_2-1bwuwdbe6hpjq1.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">This master’s thesis considers index tracking from the perspective of solution space exploration. Several search space heuristics are used in combination with different portfolio optimization models in order to select a tracking portfolio with returns that mimic a benchmark index. Even with the fastest hardware and the most massively parallel systems available today, it is infeasible to conduct an exhaustive search for the large solution space in a reasonable time. Instead of increasing the number of parallel resources with the aim to traverse as much solution space as possible, we try to obtain the best use of every parallel resource. With this aim we introduce several portfolio diversity measures. Experimental results conducted on real-world datasets show that adding diversity to the set of parallel search paths can provide a better solution (tracking portfolio) due to exploration of disparate solution space regions. However, the choice of the diversity measure plays an important role. Poor path diversification can hinder the progress towards a better solution.</dcterms:abstract>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44104/5/Gavriushina_2-1bwuwdbe6hpjq1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-03T12:08:01Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-03T12:08:01Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2018
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen