Publikation:

On supersimple groups

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. 2013, 373, pp. 426-438. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2012.09.033

Zusammenfassung

An infinite group having a supersimple theory has a finite series of definable subgroups whose factors are infinite and either virtually-FC or virtually-simple modulo a finite FC-centre. We deduce that a group which is type-definable in a supersimple theory has a finite series of relatively definable subgroups whose factors are either abelian or simple groups. In this decomposition, the non-abelian simple factors are unique up to isomorphism.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Model theory, supersimple group, just-infinite groups, series with Abelian or simple factors

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MILLIET, Cedric, 2013. On supersimple groups. In: Journal of Algebra. 2013, 373, pp. 426-438. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2012.09.033
BibTex
@article{Milliet2013super-26613,
  year={2013},
  doi={10.1016/j.jalgebra.2012.09.033},
  title={On supersimple groups},
  volume={373},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={426--438},
  author={Milliet, Cedric}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26613">
    <dcterms:bibliographicCitation>Journal of Algebra ; 373 (2013). - S. 426-438</dcterms:bibliographicCitation>
    <dcterms:title>On supersimple groups</dcterms:title>
    <dc:creator>Milliet, Cedric</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T13:33:41Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Milliet, Cedric</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T13:33:41Z</dc:date>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:abstract xml:lang="eng">An infinite group having a supersimple theory has a finite series of definable subgroups whose factors are infinite and either virtually-FC or virtually-simple modulo a finite FC-centre. We deduce that a group which is type-definable in a supersimple theory has a finite series of relatively definable subgroups whose factors are either abelian or simple groups. In this decomposition, the non-abelian simple factors are unique up to isomorphism.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26613"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen