Publikation:

Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting

Lade...
Vorschaubild

Dateien

Muecher_2-1bnro7q4n9p1y6.pdf
Muecher_2-1bnro7q4n9p1y6.pdfGröße: 867.46 KBDownloads: 97

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Artificial Intelligence. Frontiers Research Foundation. 2021, 4, 787534. eISSN 2624-8212. Available under: doi: 10.3389/frai.2021.787534

Zusammenfassung

This paper uses Long Short Term Memory Recurrent Neural Networks to extract information from the intraday high-frequency returns to forecast daily volatility. Applied to the IBM stock, we find significant improvements in the forecasting performance of models that use this extracted information compared to the forecasts of models that omit the extracted information and some of the most popular alternative models. Furthermore, we find that extracting the information through Long Short Term Memory Recurrent Neural Networks is superior to two Mixed Data Sampling alternatives.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

neural networks, forecasting, high-frequency data, realized volatility, mixed data sampling, long short term memory

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MÜCHER, Christian, 2021. Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting. In: Frontiers in Artificial Intelligence. Frontiers Research Foundation. 2021, 4, 787534. eISSN 2624-8212. Available under: doi: 10.3389/frai.2021.787534
BibTex
@article{Mucher2021Artif-57256,
  year={2021},
  doi={10.3389/frai.2021.787534},
  title={Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting},
  volume={4},
  journal={Frontiers in Artificial Intelligence},
  author={Mücher, Christian},
  note={Article Number: 787534}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57256">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-11T14:36:39Z</dcterms:available>
    <dc:creator>Mücher, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57256"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting</dcterms:title>
    <dcterms:abstract xml:lang="eng">This paper uses Long Short Term Memory Recurrent Neural Networks to extract information from the intraday high-frequency returns to forecast daily volatility. Applied to the IBM stock, we find significant improvements in the forecasting performance of models that use this extracted information compared to the forecasts of models that omit the extracted information and some of the most popular alternative models. Furthermore, we find that extracting the information through Long Short Term Memory Recurrent Neural Networks is superior to two Mixed Data Sampling alternatives.</dcterms:abstract>
    <dc:contributor>Mücher, Christian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57256/1/Muecher_2-1bnro7q4n9p1y6.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57256/1/Muecher_2-1bnro7q4n9p1y6.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-11T14:36:39Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen