Publikation: Diversity-driven widening
Lade...
Dateien
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
TUCKER, Allan, ed., Frank HÖPPNER, ed., Arno SIEBES, ed., Stephen SWIFT, ed.. Advances in Intelligent Data Analysis XII : 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, proceedings. Berlin: Springer, 2013, pp. 223-236. Lecture Notes in Computer Science. 8207. ISBN 978-3-642-41397-1. Available under: doi: 10.1007/978-3-642-41398-8_20
Zusammenfassung
This paper follows our earlier publication, where we introduced the idea of tuned data mining which draws on parallel resources to improve model accuracy rather than the usual focus on speed-up. In this paper we present a more in-depth analysis of the concept of Widened Data Mining, which aims at reducing the impact of greedy heuristics by exploring more than just one suitable solution at each step. In particular we focus on how diversity considerations can substantially improve results. We again use the greedy algorithm for the set cover problem to demonstrate these effects in practice.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
12th International Symposium, IDA 2013, 17. Okt. 2013 - 19. Okt. 2013, London
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
IVANOVA-ROHLING, Violeta, Michael R. BERTHOLD, 2013. Diversity-driven widening. 12th International Symposium, IDA 2013. London, 17. Okt. 2013 - 19. Okt. 2013. In: TUCKER, Allan, ed., Frank HÖPPNER, ed., Arno SIEBES, ed., Stephen SWIFT, ed.. Advances in Intelligent Data Analysis XII : 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, proceedings. Berlin: Springer, 2013, pp. 223-236. Lecture Notes in Computer Science. 8207. ISBN 978-3-642-41397-1. Available under: doi: 10.1007/978-3-642-41398-8_20BibTex
@inproceedings{IvanovaRohling2013Diver-26488, year={2013}, doi={10.1007/978-3-642-41398-8_20}, title={Diversity-driven widening}, number={8207}, isbn={978-3-642-41397-1}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XII : 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, proceedings}, pages={223--236}, editor={Tucker, Allan and Höppner, Frank and Siebes, Arno and Swift, Stephen}, author={Ivanova-Rohling, Violeta and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26488"> <dc:creator>Berthold, Michael R.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26488"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-20T10:00:30Z</dcterms:available> <dcterms:issued>2013</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Berthold, Michael R.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26488/2/Ivanova_264880.pdf"/> <dcterms:abstract xml:lang="eng">This paper follows our earlier publication, where we introduced the idea of tuned data mining which draws on parallel resources to improve model accuracy rather than the usual focus on speed-up. In this paper we present a more in-depth analysis of the concept of Widened Data Mining, which aims at reducing the impact of greedy heuristics by exploring more than just one suitable solution at each step. In particular we focus on how diversity considerations can substantially improve results. We again use the greedy algorithm for the set cover problem to demonstrate these effects in practice.</dcterms:abstract> <dcterms:title>Diversity-driven widening</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Ivanova-Rohling, Violeta</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26488/2/Ivanova_264880.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-20T10:00:30Z</dc:date> <dcterms:bibliographicCitation>Advances in intelligent data analysis XII: 12th international symposium ; proceedings / IDA 2013, London, UK, October 17 - 19, 2013 / Allan Tucker, Frank Höppner, Arno Siebes, Stephen Swift (eds.). - Heidelberg [u.a.] : Springer, 2013. - S. 223-236. - (Lecture notes in computer science ; 8207). - ISBN 978-3-642-41397-1</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja