Rational values of Weierstrass zeta functions

Lade...
Vorschaubild
Datum
2016
Autor:innen
Jones, Gareth O.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Erschienen in
Proceedings of the Edinburgh Mathematical Society (PEMS) ; 59 (2016), 4. - S. 945-958. - ISSN 0013-0915. - eISSN 1464-3839
Zusammenfassung
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15, for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Weierstrass zeta functions, counting, irrationality
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690JONES, Gareth O., Margaret E. M. THOMAS, 2016. Rational values of Weierstrass zeta functions. In: Proceedings of the Edinburgh Mathematical Society (PEMS). 59(4), pp. 945-958. ISSN 0013-0915. eISSN 1464-3839. Available under: doi: 10.1017/S0013091515000309
BibTex
@article{Jones2016Ratio-30336,
  year={2016},
  doi={10.1017/S0013091515000309},
  title={Rational values of Weierstrass zeta functions},
  number={4},
  volume={59},
  issn={0013-0915},
  journal={Proceedings of the Edinburgh Mathematical Society (PEMS)},
  pages={945--958},
  author={Jones, Gareth O. and Thomas, Margaret E. M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30336">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Rational values of Weierstrass zeta functions</dcterms:title>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/>
    <dc:contributor>Jones, Gareth O.</dc:contributor>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:abstract xml:lang="eng">We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)&lt;sup&gt;15&lt;/sup&gt;, for an effective constant c &gt; 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Jones, Gareth O.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30336"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet