Publikation: Rational values of Weierstrass zeta functions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15, for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JONES, Gareth O., Margaret E. M. THOMAS, 2016. Rational values of Weierstrass zeta functions. In: Proceedings of the Edinburgh Mathematical Society (PEMS). 2016, 59(4), pp. 945-958. ISSN 0013-0915. eISSN 1464-3839. Available under: doi: 10.1017/S0013091515000309BibTex
@article{Jones2016Ratio-30336, year={2016}, doi={10.1017/S0013091515000309}, title={Rational values of Weierstrass zeta functions}, number={4}, volume={59}, issn={0013-0915}, journal={Proceedings of the Edinburgh Mathematical Society (PEMS)}, pages={945--958}, author={Jones, Gareth O. and Thomas, Margaret E. M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30336"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Rational values of Weierstrass zeta functions</dcterms:title> <dc:creator>Thomas, Margaret E. M.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/> <dc:contributor>Jones, Gareth O.</dc:contributor> <dc:contributor>Thomas, Margaret E. M.</dc:contributor> <dcterms:abstract xml:lang="eng">We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)<sup>15</sup>, for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Jones, Gareth O.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30336"/> </rdf:Description> </rdf:RDF>